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Abstract

This paper completes the construction of p-adic L-functions for unitary groups. More precisely,
in Harris, Li and Skinner [‘p-adic L-functions for unitary Shimura varieties. I. Construction
of the Eisenstein measure’, Doc. Math. Extra Vol. (2006), 393-464 (electronic)], three of the
authors proposed an approach to constructing such p-adic L-functions (Part I). Building on
more recent results, including the first named author’s construction of Eisenstein measures and
p-adic differential operators [Eischen, ‘A p-adic Eisenstein measure for unitary groups’, J. Reine
Angew. Math. 699 (2015), 111-142; * p-adic differential operators on automorphic forms on unitary
groups’, Ann. Inst. Fourier (Grenoble) 62(1) (2012), 177-243], Part II of the present paper provides
the calculations of local ¢-integrals occurring in the Euler product (including at p). Part III of the
present paper develops the formalism needed to pair Eisenstein measures with Hida families in the
setting of the doubling method.

2010 Mathematics Subject Classification: 11F85, 11F66, 14G10, 11F55 (primary); 11R23, 14G35,
11G10, 11F03 (secondary)

1. Introduction

This paper completes the construction of p-adic L-functions for unitary groups.
More precisely, in [HLS06], three of the authors proposed an approach to
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constructing such p-adic L-functions (Part I). Building on more recent results,
including the first named author’s construction of Eisenstein measures and p-
adic differential operators [Eis15, Eis12], Part II of the present paper provides
the calculations of local ¢-integrals occurring in the Euler product (including at
p). Part III of the present paper develops the formalism needed to pair Eisenstein
measures with Hida families in the setting of the doubling method.

The construction of p-adic L-functions consists of several significant steps,
including studying certain ¢-integrals occurring in the Euler products of the
corresponding C-valued L-functions (one of the main parts of this paper, which
involves certain careful choices of local data and which is the specific step about
which we are most frequently asked by others in the field) and extending and
adapting earlier constructions of p-adic L-functions (for example Hida’s work
in [Hid96], which recovers Katz’s construction from [Kat78] as a special case).
We also note that the last three named authors had already computed local zeta
integrals for sufficiently regular data as far back as 2003, but the computations
were not included in [HL.S06] for lack of space. Since then, a new approach to
choosing local data and computing local zeta integrals at primes dividing p has
allowed us to treat the general case. These are the computations presented here.

In Section 1.1, we put this paper in the context of the full project to construct
p-adic L-functions (which comprises the present paper and [HLS06]), and
we describe the key components and significance of the broader project. The
exposition in the present paper, especially the description of the geometry, was
written carefully to provide a solid foundation for future work both by the authors
of this paper and by other researchers in the field.

1.1. About the project. Very precise and orderly conjectures predict how
certain integer values of L-functions of motives over number fields, suitably
modified, fit together into p-adic analytic functions (for example [Coa89,
CPR89, Pan%4, Hid96]). These functions directly generalize the p-adic zeta
function of Kubota and Leopoldt that has played a central role in algebraic
number theory, through its association with Galois cohomology, in the form
of Iwasawa’s Main Conjecture. Such p-adic L-functions have been defined
in a number of settings. In nearly all cases they are attached to automorphic
forms rather than to motives; no systematic way is known to obtain information
about special values of motivic L-functions unless they can be identified with
automorphic L-functions. However, the procedures for attaching L-functions to
automorphic forms other than Hecke characters are by no means orderly; any
given L-function can generally be obtained by a number of methods that have
no relation to one another, and in general no obvious relation to the geometry
of motives. And while these procedures are certainly precise, they also depend
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on arbitrary choices: the L-function is attached abstractly to an automorphic
representation, but as an analytic function it can only be written down after
choosing a specific automorphic form, and in general there is no optimal choice.

When Hida developed the theory of analytic families of ordinary modular
forms he also expanded the concept of p-adic L-functions. Hida’s constructions
naturally gave rise to analytic functions in which the modular forms are variables,
alongside the character of GL(1) that plays the role of the s variable in
the complex L-function. This theory has also been generalized, notably to
overconvergent modular forms. There seems to be a consensus among experts
on how this should go in general, but as far as we know no general conjectures
have been made public. This is in part because constructions of p-adic families
are no more orderly than the construction of automorphic L-functions, except
in the cases Hida originally studied: families are realized in the coherent or
topological cohomology of a locally symmetric space; but the connection of the
latter to motives is tenuous and in many cases purely metaphoric. (In principle,
completed cohomology in Emerton’s sense could also be used for this purpose,
and would give rise to more general families. As far as we know p-adic L-
functions have not yet been constructed in this setting.)

The present project develops one possible approach to the construction of p-
adic L-functions. We study complex L-functions of automorphic representations
of unitary groups of n-dimensional hermitian spaces, by applying the doubling
method of Garrett and Piatetski—Shapiro—Rallis [Gar84, GPSRS87] to the
automorphic representations that contribute to the coherent cohomology of
Shimura varieties in degree 0; in other words, to holomorphic modular forms.
When n = 1, we recover Katz’s theory of p-adic L-functions of Hecke
characters [Kat78], and much of the analytic theory is an adaptation of Katz’s
constructions to higher dimensions. For general n, the theory of ordinary families
of holomorphic modular forms on Shimura varieties of PEL type has been
developed by Hida, under hypotheses on the geometry of compactifications that
have subsequently been proved by Lan. It is thus no more difficult to construct
p-adic L-functions of Hida families than to study the p-adic versions of complex
L-functions of individual automorphic representations. However, interpreting
our results poses a special challenge. The conjectures on motivic p-adic L-
functions are formulated in a framework in which the Betti realization plays a
central role, in defining complex as well as p-adic periods used to normalize the
special values. Betti cohomology exists in the automorphic setting as well, but
it cannot be detected by automorphic methods. The doubling method provides a
substitute: the cup product in coherent cohomology. Here one needs to exercise
some care. Shimura proved many years ago that the critical value at s = 1
of the adjoint L-function attached to a holomorphic modular form f equals
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the Petersson square norm (f, f), multiplied by an elementary factor. If one
takes this quantity as the normalizing period, the resulting p-adic adjoint L-
function is identically equal to 1. Hida observed that the correct normalizing
period is not (f, f) but rather the product of (normalized) real and imaginary
periods; using this normalization, one obtains a p-adic adjoint L-function whose
special values measure congruences between f and other modular forms. This
is one of the fundamental ideas in the theory of deformations of modular forms
and Galois representations; but it seems to be impossible to apply in higher
dimensions, because the real and imaginary periods are defined by means of
Betti cohomology. One of the observations in the present project is that the
integral information provided by these Betti periods can naturally be recovered
in the setting of the doubling method, provided one works with Hida families
that are free over their corresponding Hecke algebras, and one assumes that
the Hecke algebras are Gorenstein. These hypotheses are not indispensable, but
they make the statements much more natural, and we have chosen to adopt them
as a standard; some of the authors plan to indicate in a subsequent paper what
happens when they are dropped.

This approach to families is the first of the innovations of the present project,
in comparison with the previous work [HLS06]. We stress that the Gorenstein
hypothesis, suitably interpreted, is particularly natural in the setting of the
doubling method. Our second, most important innovation, is the use of the
general Eisenstein measure constructed in [Eis15, Eis14].

In order to explain the contents of this project more precisely, we remind the
reader what is expected of a general theory of p-adic L-functions. We are given a
p-adic analytic space Y and a subset Y ' of points such that, for each y € Y°4%
there is a motive M,, and possibly an additional datum r,, (a refinement) such that
0 is a critical value of the L-function L(s, M,). The p-adic L-function is then a
meromorphic function L, on Y whose values at y € Y can be expressed in

terms of L(0, M,). More precisely, there is a p-adic period p(M,, ry) such that
L,(y)
P(AI’I)"’)‘)

is an algebraic number, and then we have the relation

L0, M,)

AR (1)

Lp()’) N
My Zoo(My)Z,(My, 1y) -

Here ¢*(M,) is the period that appears in Deligne’s conjecture on special values
of L-functions, so that i%{f’;
correction factors that are built out of Euler factors and e-factors of the zeta
function of M, at archimedean primes and primes dividing p, respectively.

In our situation, we start with a CM field K over QQ, a quadratic extension

of a totally real field *, and an n-dimensional hermitian vector space V /K.

is an algebraic number, while Z,, and Z, are
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Then Y is the space of pairs (A, x), where A runs through the set of ordinary
p-adic modular eigenforms on the Shimura variety Sh(V') attached to U (V) and
x rtuns through p-adic Hecke characters of K; both A and x are assumed to
be unramified outside a finite set S of primes of K, including those dividing
p, and of bounded level at primes not dividing p. Because we are working
with ordinary forms—more precisely, what Hida calls nearly ordinary forms,
though the terminology is used inconsistently in the literature —the ring O(Y)
of holomorphic functions on Y is finite over some Iwasawa algebra, and the
additional refinement is superfluous. In the project, A denotes a character of
Hida’s (nearly) ordinary Hecke algebra. If (A, x) € Y°* then

e ) = A, for some automorphic representation 7 of U (V); it is the character of
the ordinary Hecke algebra acting on vectors that are spherical outside S and
(nearly) ordinary at primes dividing p;

e x is a Hecke character of type Ay;
e the standard L-function L(s, 7, x) has a critical value at s = 0.

(By replacing x by its multiples by powers of the norm character, this definition
accommodates all critical values of L(s, m, x).) Under hypotheses to be
discussed below, the automorphic version of Equation (1) is particularly simple
to understand:

L, 7, x)
5 )

X

Lp()\naX):C(n)’Zoo(jT’ X)Zp(naX)ZS' (2)

The left-hand side is the specialization to the point (A, x) of an element
L, € O(Y). The right-hand side is purely automorphic. The L-function is the
standard Langlands L-function of U(V) x GL(1)k. Its analytic and arithmetic
properties have been studied most thoroughly using the doubling method. If
U (V) is the symmetry group of the hermitian form (-, -),, on V, let —V be the
space V with the hermitian form —(-, -),, and let U(—V) and Sh(—V) be the
corresponding unitary group and Shimura variety. The groups U(V) and U(—V)
are canonically isomorphic, but the natural identification of Sh(—V) with
Sh(V) is anti-holomorphic; thus, holomorphic automorphic forms on Sh(V) are
identified with anti-holomorphic automorphic forms, or coherent cohomology
classes of top degree, on Sh(—V), and vice versa. The space W =V & (—V),
endowed with the hermitian form (-, -),,®—¢-, -}y, is always maximally isotropic,
so U (W) has a maximal parabolic subgroup P with Levi factor isomorphic to
GL(n)x. To any Hecke character x of I one associates the family of degenerate
principal series

I(x,s) =Ind} ) x o det-5,""
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and constructs the meromorphic family of Eisenstein series s — E(x, s, f, &)
with f = f(s) a section of I(x,s) and g € U(W)(A). On the other hand,
U(V) x U(—V) naturally embeds in U(W). Thus, if ¢ and ¢’ are cuspidal
automorphic forms on U (V)(A) and U (—V)(A), respectively, the integral

[(p, ¢, f.5)
= / E(x.s, f, (g1, 8)¢ ()¢ (g2) x ' (det(g,)) dgi dg»,
[U(V)xU(=V)]

defines a meromorphic function of s. Here [U(V) x U(=V)] = U(V)
(FONU(V)YA) x U(=V)(F)O\U(=V)(A), g1 € U(V)(A), g2 € U(=V)(A), and
dg, and dg, are Tamagawa measures.

The doubling method asserts that, if = is a cuspidal automorphic
representation of U(V) and ¢ € m, then I(¢, ¢', f,s) vanishes identically
unless ¢’ € w"; and if (¢, ¢') # 0, then the integrals (¢, ¢’, f, s) unwind and
factor as an Euler product whose unramified terms give the standard L-function
L(s + % mw, x) and (as f, ¢, ¢’ vary) provide the meromorphic continuation
and functional equation of the standard L-function. Another way to look at this
construction is to say that the Garrett map

¢ = G(f,¢,5)(g)

= x ' odet(g) - E(x,s, f, (g1, 82)9(g1) dg
UV)Y(F\U(V)(A)]

is a linear transformation from the automorphic representation = of U(V) to
viewed as an automorphic representation of U (—V); and the matrix coefficients
of this linear transformation give the adelic theory of the standard L-function. We
develop a theory that allows us to interpret these matrix coefficients integrally in
Hida families, under special hypotheses on the localized Hecke algebra described
below. Note that when 7 is an anti-holomorphic representation of U (V), its
image under the Garrett map is 7, but viewed as a holomorphic representation
of U(-V).

The factor P, , is a product of several terms, of which the most important is
a normalized Petersson inner product of holomorphic forms on U (V). Although
it arises naturally as a feature of the doubling method, its definition involves
some choices that are reflected in the other terms. The local term Zg, in our
normalization, is a local volume multiplied by a local inner product (depending
on the choices). The correction factors Z, and Z, are explicit local zeta integrals
given by the doubling method. The archimedean factor has not been evaluated
explicitly, except when 7 is associated to a holomorphic modular form of scalar
weight (by Shimura) or, more generally, of weight that is ‘half scalar’ at every
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archimedean place (by Garrett) [Shi97, Gar08]. In the present paper we leave it
unspecified; it depends only on the archimedean data (the weights) and not on
the Hecke eigenvalues.

The explicit calculation of the local term Z, is our third major innovation
and one of the key pieces of the current paper, and it occupies the longest single
section of this paper (Section 4). It has the expected form: a quotient of a product
of Euler factors (evaluated at s) by another product of Euler factors (evaluated at
1 — s) multiplied by a local ¢ factor and a volume factor. The key observation is
that the denominator arises by applying the Godement—Jacquet local functional
equation to the input data. This is the step in the construction that owes the
most to (adelic) representation theory. The input data for the Eisenstein measure
represent one possible generalization of Katz’s construction in [Kat78]. The
local integral has been designed to apply to overconvergent families as well as
to ordinary families; one of us plans to explore this in future work. The precise
form of the local factor at a prime w dividing p depends on the signatures of the
hermitian form at the archimedean places associated to p as part of the ordinary
data; this appears mysterious but in fact turns out to be a natural reflection of
the PEL structure at primes dividing p, or alternatively of the embedding of the
ordinary locus of the Shimura variety attached to (two copies of) U (V) in that
attached to the doubled group.

A different calculation of the local term had been carried out at the time
of [HLS06]. It was not published at the time because of space limitations. It
was more ad hoc than the present version and applied only when the adelic
local components at primes dividing p of an ordinary form could be identified as
explicit functions in a principal series. The present calculation is more uniform
and yields a result in the expected form.

Before explaining the final factor c(rr), it is preferable to explain the special
hypotheses underlying the formula (2), which represent the fourth innovation in
this project. The point (A, x) belongs to a Hida family, which for the present
purposes means a connected component, which we denote Y, ,, of the space
Y; in other contexts one works with an irreducible component. The ring of
functions on Y, , is of the form A ® T,, where A is an Iwasawa algebra attached
to x and T, is the localization of the big Hecke algebra at the maximal ideal
attached to . The principal hypotheses are that T, is Gorenstein, and that the
module of ordinary modular forms (or its Z,-dual, to be more precise) is free
over T,. There are also local hypotheses that correspond to the hypothesis of
minimal level in the Taylor—Wiles theory of deformations of modular Galois
representations. These hypotheses make it possible to define L, as an element
of Oy, . The presence of the factor c(r) is a sign that L, is not quite the p-
adic L-function; c(;r) is a generator of the congruence ideal which measures
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congruences between A, and other characters A, of T, (of the same weight
and level). The specific generator c(r) depends on the same choices used to
define P, ,, so that the product on the right-hand side is independent of all
choices.

In the absence of the special hypotheses, it is still possible to define L, in the
fraction field of A ® T, but the statement is not so clean. In any case, the p-adic
valuations of ¢(sr) are in principle unbounded, and so the p-adic interpolation of
the normalized critical values of standard L-functions is generally given by a
meromorphic function on Y.

1.1.1. Clarifications. The above discussion has artificially simplified several
points. The Shimura variety is attached not to U (V') but rather to the subgroup,
denoted GU(V), of the similitude group of V with rational similitude factor. All
of the statements above need to be modified to take this into account, and this
is done in the paper. Since completing the present paper, one of the authors has
begun to work with Shimura varieties attached to the unitary groups themselves.
It should be easy for motivated readers to reformulate the results of the present
paper in this alternative language.

What we called the moduli space of PEL type associated to V is, in general,
a union of several isomorphic Shimura varieties, indexed by the defect of the
Hasse principle; p-adic modular forms are most naturally defined on a single
Shimura variety rather than on the full moduli space. We need the moduli space
in order to define p-adic modular forms, but in the computations we work with
a single fixed Shimura variety.

Although the p-adic L-functions are attached to automorphic forms on unitary
(similitude) groups, they are best understood as p-adic analogues of the standard
L-functions of cuspidal automorphic representations of GL(n). The passage
from unitary groups to GL(n) is carried out by means of stable base change.
A version of this adequate for our applications was developed by Labesse
in [Lab11]. Complete results, including precise multiplicity formulas, were
proved by Mok for quasisplit unitary groups [Mok15]; however, we need
to work with unitary groups over totally real fields with arbitrary signatures,
and the quasisplit case does not suffice. The general case is presently being
completed by Kaletha, Minguez, Shin, and White, and we have assumed
implicitly that Arthur’s multiplicity conjectures are known for unitary groups.
The book [KMSW14] works out the multiplicities of tempered representations
and is probably sufficient for the purposes of the present project.

From the standpoint of automorphic representations of GL(n), the ordinary
hypothesis looks somewhat special; in fact, the critical values of L-functions of
GL(n) can be interpreted geometrically on unitary groups of different signatures,
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and the ordinary hypotheses for these different unitary groups represent different
branches of a p-adic L-function that can only be related to one another in
a general overconvergent family. The advantage of restricting our attention to
ordinary families is that the p-adic L-functions naturally belong to integral
Hecke algebras. However, to add to the confusion, Hida’s theory of (nearly)
ordinary modular forms applies to holomorphic automorphic representations, but
the doubling method requires us to work with anti-holomorphic representations.
The eigenvalues of the U,-operators on representations do not coincide with
those on their holomorphic duals; for lack of a better terminology, we call these
representations anti-ordinary. Keeping track of the normalizations adds to the
bookkeeping but involves no essential difficulty.

1.1.2. What this project does not accomplish. Although we have made an
effort to prove rather general theorems, limitations of patience have induced us
to impose restrictions on our results. Here are some of the topics we have not
covered.

First of all, we have not bothered to verify that the local terms (Z,,
Z., Zs) and the global terms (L(0, 7, x), Qr ,) in Equation (2) correspond
termwise with those predicted by the general conjectures on p-adic L-functions
for motives. The correspondence between automorphic representations and
(de Rham realizations of) motives is not straightforward. In a general sense,
comparing (1) with (2), we can say that the motive M, that appears in (1)
corresponds in (2) to the hypothetical motive attached to the automorphic
representation 1, whose £-adic realization is the n-dimensional representation
of Gal(Q/KC) constructed in [Che04] (among many other places), twisted by the
£-adic Galois character attached to the Hecke character x. The local factor Z,
certainly has the same shape as the local factors that appear in the conjectures
of [Coa89, CPR89], but we have not checked that the Frobenius eigenvalues
that appear in the latter conjectures are exactly the ones we find. We expect to
address these issue in a subsequent paper; however, until we find a simple way
to compute the archimedean term Z, (7, x) explicitly, we will not be able to
compare it with anything motivic.

We have also not attempted to analyze the local factors at ramified finite
primes for 7 and x . The geometry of the moduli space has no obvious connection
to the local theory of the doubling method. Moreover, a complete treatment of
ramified local factors requires a p-integral version of the doubling method. This
may soon be available, thanks to work of Minguez, Helm, Emerton-Helm, and
Moss, but for the moment we have preferred to simplify our presentation by
choosing local data that give simple volume factors for the local integrals at bad
primes.
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One of us plans to adapt the methods of the present project to general
overconvergent families, where Hida theory is no longer appropriate. On the
other hand, the methods of Hida theory do apply to more general families than
those we consider. In [Hid98], Hida introduces the notion of P-ordinary modular
forms on a reductive group G, where P denotes a parabolic subgroup of G. One
obtains the usual (nearly) ordinary forms when P = B is a Borel subgroup; in
general, for P of p-adic rank r, the P-ordinary forms vary in an r-dimensional
family, up to global adjustments (related to Leopoldt’s conjecture in general).
Most importantly, a form can be P-ordinary without being B-ordinary. Our
theory applies to P-ordinary forms as well; we hope to return to this point in
the future, and [EM19] is a first step in this direction.

Our p-adic L-function, when specialized at a classical point corresponding
to the automorphic representation m, gives the corresponding value of the
classical complex L-function, divided by what appears to be the correctly
normalized complex period invariant, and multiplied by a factor c(7) measuring
congruences between m and other automorphic representations. This is a formal
consequence of the Gorenstein hypothesis and is consistent with earlier work
of Hida and others on p-adic L-functions of families. It is expected that the
factor c() is the specialization at 7 of the ‘genuine’ p-adic L-function that
interpolates normalized values at s = 1 of the adjoint L-function (of 7, or one
of the Asai L-functions for its base change to GL(n)). As far as we know, no one
has constructed this p-adic adjoint L-function in general. We do not know how to
construct a p-adic analytic function on the ordinary family whose specialization
at 7w equals c(7r), not least because c () is only well defined up to multiplication
by a p-adic unit. Most likely the correct normalization will have to take account
of p-adic as well as complex periods.

Finally, we have always assumed that our base field K is unramified at p. This
hypothesis is unnecessary, thanks to Lan’s work in [Lan18], but it simplifies a
number of statements.

1.2. History. Work on this paper began in 2001 as a collaboration between
two of the authors, around the time of a visit by one of us (M.H.) to the second
one (J.-S. L.) in Hong Kong. The initial objective was to study congruences
between endoscopic and stable holomorphic modular forms on unitary groups.
The two authors were soon joined by a third (C. S.), and a report on the
results was published in [HLSO0S]. The subsequent article [HLS06] carried
out the first part of the construction of a p-adic analytic function for a single
automorphic representation. Because p-adic differential operators had not yet
been constructed for unitary group Shimura varieties, this function only provided
the p-adic interpolation for the right-most critical value of the L-function, and
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p-adic L-functions for unitary groups 11

only applied to scalar-valued holomorphic modular forms. Moreover, although
the local computation of the zeta integrals at primes dividing p, which was
not included in [HLS06], was based on similar principles to the computation
presented here, it had only been completed for ramified principal series and
only when the conductors of the local inducing characters were aligned with the
slopes of the Frobenius eigenvalues. After the fourth author (E.E.) had defined p-
adic differential operators in [Eis12, Eis16] and constructed the corresponding
Eisenstein measure in [Eis15, Eis14], it became possible to treat general families
of holomorphic modular forms and general ramification.

The delay in completing the paper, for which the authors apologize, can be
attributed in large part to the difficulty of reconciling the different notational
conventions that had accumulated over the course of the project. In the meantime,
Xin Wan had constructed certain p-adic L-functions in the same setting
in [Wan15], by a method based on computation of Fourier—Jacobi coefficients,
as in [SU14]. More recently, Zheng Liu has constructed p-adic L-functions for
symplectic groups [Liul9b]. Among other differences, Liu makes consistent
use of the theory of nearly overconvergent p-adic modular forms, thus directly
interpreting nearly holomorphic Eisenstein series as p-adic modular forms; and
her approach to the local zeta integrals is quite different from ours.

1.3. Contents and structure of this paper. After establishing notation and
conventions in Section 1.4 below, we begin in Section 2 by recalling the theory
of modular forms on unitary groups, as well as Hida’s theory of p-adic modular
forms on unitary groups. This section has carefully set up the framework needed
for our project and will likely also provide a solid foundation for others working
in this area. In Section 3, we discuss the geometry of restrictions of automorphic
forms, since the restriction of an Eisenstein series is a key part of the doubling
method (Section 4.1) used to construct L-functions. In Section 4, we discuss
the doubling method. This section also contains the local zeta calculations
mentioned at the beginning of the introduction. The most important of these
is the calculation at primes dividing p (Section 4.3), which is also the longest
single step of this paper. Section 5 provides statements about measures, which
depend on the local data chosen in Section 4. A formalism for relating duality
pairings to complex conjugation and to the action of Hecke algebras is developed
in Section 0; this is extended to Hida families in Section 7, which also begins
the formalism for construction of p-adic L-functions in families. Section 8
establishes the relation between p-adic and C*-differential operators, and
develops the local theory of ordinary and anti-ordinary vectors in representations
at p-adic places. Finally, Section 9 states and proves the main theorems about the
existence of the p-adic L-function.
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E. Eischen, M. Harris, J. Li and C. Skinner 12
1.4. Notation and conventions.

1.4.1. General notation. Let Q C C be the algebraic closure of Q in C and
let the complex embeddings of a number field F C Q be Xy = Hom(F, C); so
Y = Hom(F, Q). Throughout, K C Q is a CM field with ring of integers O,
and K7 is the maximal totally real subfield of K. The nontrivial automorphism
in Gal(IC/KCt) is denoted by c. Given a place v of /X, the conjugate place c(v) is
usually denoted v.

Let p be a fixed prime that is unramified in /C and such that every place above
p in K splits in K. Let @p be an algebraic closure of @, and fix an embedding
incl, : Q— @p. Let Z( » C Q be the valuation ring for the valuation determined
by incl,. Let C, be the completion of @p and let O, be the valuation ring of C,,

(so the completion of Z,)). Let ¢, : C —> C, be an isomorphism extending
incl,.

When V is a hermitian space over K, with hermitian form (, ), we let GU" (V)
denote the group of unitary similitudes of V; this is a group scheme over T,
defined by

GU*(V)(R)
= {g € GL(V ®x+ R) | ((v), (V) = v(g){v, V) Yv,v" € V ®+ R},
where v(g) € R*; here R is any K'-algebra. This is the group that is usually

denoted GU(V). However, we prefer to reserve the notation GU(V') for the Q-
subgroup scheme of R+ /o GU™ (V) which is the fiber product

GU(V) = RIC*/Q GU+(V) XR,C+/@G Gm,

where the map G,, < Ry+,9G kc+ is the canonical inclusion.

Forany o € X let p, be the prime of O determined by the embedding incl, o
o. Note that ¢(p,) = p,.. For a place w of K over p we will write p,, for the
corresponding prime of . Let X', be a set containing exactly one place of K
over each place of KT over p.

m, Kt

REMARK 1.4.2. It is often more convenient to denote an algebraic group over a
ring R which is a number field, a p-adic field, or an integer ring, by its group of
points G (R). For example, if V is a free R-module we may write G = GLz (V)
as shorthand for the group scheme over Spec(R) whose group of S-valued points,
for any R-scheme S, is given by G(V ®x S).

Let Z(1) C C be the kernel of the exponential map exp : C — C*. This
is a free Z-module of rank one with noncanonical basis 2w +/—1. For any
commutative ring R let R(1) = R ® Z(1).
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p-adic L-functions for unitary groups 13

In what follows, when (G, X) is a Shimura datum, an automorphic
representation of G is defined to be a (g, K) x G(Ay)-submodule of the
space of automorphic forms, where K is the stabilizer of a point in X; in
particular, K contains the center of G(R) but does not generally contain a full
maximal compact subgroup. In this way, holomorphic and anti-holomorphic
representations are kept separate. This is of fundamental importance for
applications to coherent cohomology and thus to our construction of p-adic
L-functions.

1.4.3. Measures and pairings. We will need to fix a Haar measure dg on the
adele group of a reductive group G over a number field F. For the sake of
definiteness we take dg to be Tamagawa measure. In this paper, we will not
be so concerned with the precise choice of measure, because we will not be
calculating local zeta integrals at archimedean primes explicitly, but we do want
to be consistent. When we write dg = [[, dg,, where v runs over places of F
and dg, is a Haar measure on the F,-points G(F,), we will want to make the
following additional hypotheses:

HYPOTHESES 1.4.4. (1) At all finite places v at which the group G is
unramified, dg, is the measure that gives volume 1 to a hyperspecial
maximal compact subgroup.

(2) At all finite places v at which the group G is isomorphic to [[, GL(n;,
F;..), where F, . is a finite extension of F, with integer ring O; (whether
or not F; ,, is ramified over the corresponding completion of Q) dg, is the
measure that gives volume 1 to the group [ [, GL(n;, O;).

(3) At all finite places v, the values of dg, on open compact subgroups are
rational numbers.

(4) At archimedean places v, we choose measures such that [[ dg, is
Tamagawa measure.

Let Zg C G denote the center of G, and let Z C Zs(A) be any closed
subgroup such that Z5(A)/Z is compact; for example, one can take Z to be
the group of real points of the maximal F-split subgroup of Z;. We choose a
Haar measure on Z that satisfies the conditions of 1.4.4 if Z is the group of
adeles of an F-subgroup of Zs. The measure dg defines a bilinear pairing (, )
on L*(Z - G(F)\G(A)); more generally, if f,(zg) f2(zg) = fi(g) fa(g) for all
Z € Z, we can extend the pairing to write
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(f1, [2)z = / fi(@) f(g)dg, 3)
Z-G(F)\G(A)

and if not, we set (f1, f2), = 0.

Suppose & and 7 are irreducible cuspidal automorphic representations of G.
Then (,), : 7 ® r¥ — Cis a canonically defined pairing. Now suppose we have
factorizations

fac, :m — ®m, fac,v:n’ — @, 7, 4)
where 7, is an irreducible representation of G (F,). Moreover, assume that we
are given nondegenerate pairings of G (F,)-spaces

(Vg My @®m, — C (&)
for all v. Then there is a constant C = C(dg, fac,, fac,, [, (. ),) such that, for
all vectors ¢ € , ¢ € m" that are factorizable in the sense that
fac,, ((/)) = QuPu; fac,,v (‘PV) = ®v(p;/
we have
(0. 9")z, = (dg, fac, , fac., [ J(. ),TU) [ [¢0 0))n- (6)

When G is quasisplit and unramified over F, and 7, is a principal series
representation, induced from a Borel subgroup B C G(F,), we choose a
hyperspecial maximal compact subgroup K, C G(F,) and define the standard
local pairing to be:

fo fm, = / f(g) 7 (8u) dg. (7
K,

In situation (2) of Hypotheses 1.4.4, we take K, = [, GL(n;, O;); however,
the pairing (7) does not depend on the choice of K.

Part II: zeta integral calculations

2. Modular forms and p-adic modular forms on unitary groups

This section introduces details about modular forms and p-adic modular
forms on unitary groups that we will need for our applications. For alternate
discussions of modular forms and p-adic modular forms on unitary groups,
see [Hid04, CEF*16].
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p-adic L-functions for unitary groups 15

2.1. PEL moduli problems: generalities. By a PEL datum we will mean a
tuple P = (B, %, Op, L, (-, -), h) where

e B is a semisimple Q-algebra with positive involution *, the action of which
we write as b — b*;

o (ODp is a x-stable Z-order in B;

e L is a Z-lattice with a left Op-action and a nondegenerate alternating pairing
(-,*) : L x L = Z(1) such that (bx, y) = (x,b*y) forx,y € L and b € Op;

e i : C — Endp,gr(L ® R) is a homomorphism such that (h(z)x, y) = (x,
h(z)y) for x,y € L@ Rand z € C and —+/—1(-, h(+/—1) -} is positive
definite and symmetric.

For the purposes of subsequently defining p-adic modular forms for unitary
groups we assume that the PEL data considered also satisfy:

e B has no type D factor;
e (,):(L®Z,) x(L®Z,) = Z,(1) is a perfect pairing;

e p 1 Disc(Op), where Disc(Op) is the discriminant of Op over Z defined
in [Lanl13, Definition 1.1.1.6]; this condition implies that Op ® Z,) is a
maximal Z,)-order in B and that Oy ® Z, is a product of matrix algebras;

e The technical [Lan13, Condition 1.4.3.10] is satisfied.

We associate a group scheme G = G p over Z with such a PEL datum P: for any
Z-algebra R

G(R) ={(g,v) € GLo,er(L® R) x R™ : (gx, gy) =v(x,y)Vx,y € L® R}.

Then G g is a reductive group, and by our hypotheses with respect to p, Gz, is
smooth and G(Z,) is a hyperspecial maximal compact of G(Q,).

Let F C C be the reflex field of (L, (-, -), h) (or of P) as defined in [Lan13,
1.2.5.4] and let Of be its ring of integers. Let O = {p} or @, and let Zy
be the localization of Z at the primes in 0. Let Sg = Or ® Z). Let
K" ¢ G(A?) be an open compact subgroup and let K C G(Aj) be K" if
U=%@and G(Z,) K U otherwise. Suppose that K is neat, as defined in [Lan13,
Definition 1.4.1.8]. Then, as explained in [Lan13, Corollary 7.2.3.10], there is
a smooth, quasiprojective Sg-scheme My = My (P) that represents the functor
on locally noetherian Sp-schemes that assigns to such a scheme 7 the set of
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equivalence classes of quadruples (A, A, ¢, &) where:

e A is an abelian scheme over T;

e L:A — AYisaprime-to-[] polarization;

o 1 : O ® Zny = Endr A ® Z) such that (b)Y o A = X o 1(b*);

e o isa KU-level structure: this assigns to a geometric point 7 on each connected
component of 7 a (T, t)-stable K -orbit of O ® A?—isomorphisms

o L ®A? — Hl(szA?)
that identify (-, -) with a A?‘X—multiple of the symplectic pairing on the Tate
module H(A,, AJ‘?) defined by A and the Weil-pairing;

e Lier A satisfies the Kottwitz determinant condition defined by (L®R, (-, -), h)
(see [Lan13, Definition 1.3.4.1]);

and two quadruples (A, A, ¢, «) and (A’, A, (/, @) are equivalent if there exists
a prime-to-[J isogeny f : A — A’ such that A equals f¥ o A’ o f up to some
positive element in Z 1, U'(b) o f = fou(b) forallb € Op,and o’ = f o .

2.2. PEL moduli problems related to unitary groups. Suppose
P = (B, O, L,{--),h)

is a PEL datum as in Section 2.1 with:

e B = K™, the product of m copies of K;

e : is the involution acting as ¢ on each factor of K;

e O NK = O where K maps to B = K™ diagonally.

We say such a P is of unitary type. By maximality, Oy @ Z,) = Oy X --- x
O, = 0Oy x - x Oy (each O; is a maximal Z,,-order in K), so Oy @ Z, =
[T, [T2) Ow. Let e; € Op ® Z,) be the idempotent projecting B to the ith
copy of K. Let n; = dimy e; (L ® Q).

Over Z,, there is a canonical isomorphism

GLoyez, (L®Z,) — [[]]GLo(eiLln), g~ (gui), (8

wlp i=1
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p-adic L-functions for unitary groups 17

induced by the Oy ® Z,, = ]_[wlp Op,,-decomposition L Q Z,, = lep L,,. This
in turn induces

Gz, — Gux [][]CLou(eiLw). (g.v) > (v, (gui)). (9

weX, i=l

(Here and elsewhere we use the convention of Remark 1.4.2.)

The homomorphism / determines a pure Hodge structure of weight —1 on
V = L ®C.Let V° C V be the degree 0 piece of the Hodge filtration; this is
an Oy ® C-submodule. For each o € Xy, let a,; = dimc ¢;(V° ®pgc.o C). Let
b,; = n; — a,;. We call the collection of pairs {(a,.;, bs,i)secx. ), the signature
of h. Note that (a,c.;, bse.i) = (bs.i, as.;). The following fundamental hypothesis
will be assumed throughout:

HYPOTHESIS 2.2.1 (Ordinary hypothesis).
Po =Por = Qoi = Ao ;-

For w|p aplace of IC, we can then define (a,,;, by,;) = (@y.i, by;) forany o € i
such that p, = p,. Let Op, = O ®0 O, and L, = L ®p O,. We fix an
Op ® Z,-decomposition L ® Z, = L* @ L~ such that:

o Lt = ]_[w‘p Ll isan OpQZ, = ]_[w‘p Op.,-module with rankep, (e;L}) = a,,;
(so L~ =T1,,, L, withranko, (¢;L,)) = b, ; and L, = L} ® L,);

e L7 is the annihilator of L}ﬁ for the perfect pairing (-, -) : L, x Ly — Z,(1).

We fix a decomposition of ¢; L} as a direct sum of copies of O,,. Taking Z,-
duals via (-, -) yields a decomposition of e; L as a direct sum of copies of O; =
Homgz, (O,, Z,) (the Og-action on Homy, (E; ., Z,) factors through ¢;0p ®
Z and is given by bg(x) = ¢(b*x)). The choice of these decompositions
determines isomorphisms

GLo,,(e;L}) = GL,,,(O,), GLo,,(e;L,) = GL,, (O,), (10)
and GLo,,(e;L,) = GL,, (O,).
With respect to these isomorphisms, the embedding
GLo,, (eiLg) x GLo,,(e;L,) — GLg,,(e;L,) = GLo,,, (e,L;Z Del,)
is just the block diagonal map (A, B) — (3 9).
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2.3. Connections with unitary groups and their Shimura varieties. We
recall how PEL data of unitary type naturally arise from unitary groups. Let
V = (Vi, (-, )v)i<i<m be a collection of hermitian pairs over K: V; is a finite-
dimensional KC-space and (-, )y, : Vi x V; — K is a hermitian form relative
to KC/K*. Let § € O be totally imaginary and prime to p, and put (-, -); =
tracei ;g8 (-, -)y.. Let L; C V; be an O-lattice such that (L;, L;); C Z and (-, -);
is a perfect pairing on L; ® Z,. Such an L; exists because of our hypotheses on
p and its prime divisors in KC and on §. For each 0 € Xk, Vi, = V; Q. C
has a C-basis with respect to which (-, -); , = (-, )y, is given by a matrix of
the form diag(1,,, —1 ). Fixing such a basis, let hy,;a : C — Endgr(V;,) be
his(z) = diag(zl,,,,z1;,). Let ¥ = {0 € Xx : p, € X,}. Then ¥ isa CM type
of K, and we let h; = [], .5 hiv : C = Endirgr(Vi @ R) =[], .5 Endg(Vi,).
Let B = K™, * the involution that acts by ¢ on each K-factor of B, Oy = O™,
L =[], L; with the ith factor of Oy = O™ acting by scalar multiplication on
the ith factor of L, (-,-) = > . (-,-);, and h = [], h;. Then P = (B, *, O,
L,2m+/—1{(-,-), h) is a PEL datum of unitary type as defined above. Note that
(@i, boi) equals (1, Si o) if 0 € X and otherwise equals (s; ,, 7:.,). The reflex
field of this PEL datum P is just the field

F:Q[{Zama(a) : ae/C,i:l,...,mH c C.

O'EE)C

This follows, for example, from [Lan13, Corollary 1.2.5.6]. Note that F is
contained in the Galois closure K’ of K in C.

As explained in [Kot92, Section 8] (see also Equations (24) below), over
the reflex field F, a moduli space Mg, associated with P is the union of
lker' (Q, G)| copies of the canonical model of the Shimura variety Sk (G,
Xp) associated to (G, hp, K); here (G, Xp) is the Shimura datum for which
hp = h € Xp and ker' (Q, G) = ker(H'(Q, G) — [], H'(Q,, G)). More
precisely, the elements of ker' (Q, G) classify isomorphism classes of hermitian
tuples V' = (V}, (, ~)V/;)1< j<m that are locally isomorphic to V' at every place

of Q. Let V = VI, ..., V® be representatives for these isomorphism classes.
Then Mg is naturally a disjoint union of F-schemes indexed by the V):
Mk, r = | IMk vi. The scheme Mgy, = Mg yo is the canonical model of
Sk (G, Xp), and for each j there is an F-automorphism of Mg ,» mapping Mg
isomorphically onto Mg y». In [Kot92], Kottwitz only treats the case where
m = 1, but the reasoning is the same in the general case.

If m = 1 and dimy V; is even, then the group G satisfies the Hasse principle
(that is, ker'(Q, G) = 0). In this case Mg is an integral model of the Shimura
variety Sx(G, Xp). If dimg V; is odd or m > 1, this is no longer the case.
However, for applications to automorphic forms, we only need one copy of
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Sk (G, Xp). We let Mg ; be the scheme-theoretic closure of the F-scheme My y,
in Mk this is a smooth, quasiprojective Sg-scheme. We let

sp Mg — Mg (11)

be the inclusion. We will refer to Mg as the moduli space and Mg ; as the
Shimura variety.

REMARK 2.3.1. For any PEL datum P, Lan has explained how the canonical
model of the Shimura variety Sx(G, Xp) is realized as an open and closed
subscheme of Mg, [Lanl2, Section 2], with a smooth, quasiprojective Sy-
model provided by its scheme-theoretic closure in Mg. This is just the model
described above.

2.3.2.  Base points. Suppose m = 1. Let (V, (-,-)y) = (Vi, (-, -)y,), and let
n = dimy V. Suppose Ky, ..., K, are finite CM extensions of K with > ;_ [KC;
K]l = n. Fori = 1,...,r, let Jy; be the Serre subtorus (defined in, for
example, [CCO14, Definition A.4.3.1]) of Resk,,gG,, and let v; : Jy; — G,
be its similitude map. Let J; C [];_, Jo,; be the subtorus defined by equality of
all the v;. Let V! = K;, viewed as a K-space of dimension [K; : K]. Each V/
can be given a K;-hermitian structure such that @;V; is isomorphic to V as an
hermitian space over K. Such an isomorphism determines an embedding of J
in G. Moreover, with respect to such an embedding, there exists a point 4y € Xp
that factors through the image of J;(R) in G(R). The corresponding embedding
of Shimura data (J;, hy) — (G, X) defines a CM Shimura subvariety of Mg ;.

For the case IC; = KC for all i (sor = n), we write JO(") for J§; this corresponds
to a PEL datum as in Section 2.1 with B = K". The base point 2 € X p is called
standard if it factors through an inclusion of J.". We henceforward assume that
the base point 4 in the PEL datum P is standard. This will guarantee that later
constructions involving Harish—Chandra modules are rational over the Galois
closure of K.

Concretely, the assumption that % is standard just means that V has a JC-basis
with respect to which (-, -),, is diagonalized and that each %, has image in the
diagonal matrices with respect to the induced basis of V ® , C.

2.4. Toroidal compactifications. One of the main results of [LLan13] is the
existence of smooth toroidal compactifications of My over S associated to
certain smooth projective polyhedral cone decompositions (which we do not
make precise here); when [J = ¢ this was already known. We denote such a
compactification by M¢' ;.. See [Lanl3, Section 6.4] for the main statements
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used below. There is a notion of one polyhedral cone decomposition refining
another that partially orders the X’s. If X" refines X, then there is a canonical
proper surjective map x5 @ MYy, — MY 5 that is the identity on M. We
write M" for the tower of compactifications {M¥" 5.} ». In certain situations (for
example, changing the group K, defining Hecke operators) it is more natural
to work with this tower, avoiding making specific compatible choices of X' or
having to vary the ‘fixed’ choices.

If K& C K then the natural map My, — My, extends canonically to a map
(of towers) Mi" — M. Similarly, if ¢ € G(A7), then the map [g] : Mgk,
Mg, (A, A, t,a) = (A, A, (, ag), extends canonically to a map M;";g,l — MY

-1 —>

This defines a right action of G(AJ':J) on the tower (of towers!) {M¢'} ..o coab)-

In the setting of Section 2.3, we let My"; ;. be the scheme-theoretic closure
of Mgy in M. This is a smooth toroidal compactification of the Shimura
variety My ;, as discussed in, for example, [LLS13, Section 4.1] and [Lan12,
Sections 3—4]; the base change to F is just the usual toroidal compactification
of the canonical model. We continue to denote by s; the induced inclusion
MY, 5 C MYy Varying ¥ and K as above induces maps between the MY, .
We let Mi", be the tower {M', ;}x. The action of G(A7) on ME gocowD)
induces an action on {M¥'; } 0 AD)- ,

Our convention will be to describe constructions over M¥" as though M" were
a single scheme. The reader should bear in mind that this means a tower of such
constructions over each M ;.. In particular, when we define a sheaf 7 over Mg"
(or some similar tower of schemes), this will be a sheaf 5 on each Mg ;. such
that there is a natural map %, . : 75 Fy — Fy forany X’ that refines . By
H! (MY, F) we mean the direct limit'li_n;z H' (MY .., Fx). In practice, the maps
of cohomology groups appearing in such a limit will all be isomorphisms.

2.5. Level structures at p. Let H = GLo,gz,(L™"). The identification (10)
determines an isomorphism

H —» HﬁGLawyi(Ow). (12)

wlp i=l

Let By C H be the Z,-Borel that corresponds via this isomorphism with the
product of the upper-triangular Borels and let B}, be its unipotent radical. Let
Ty = By /BY; this is identified by isomorphism (12) with the diagonal matrices.

Suppose [ = {p}. There exists a semiabelian scheme A over M{" that is part
of a degenerating family as in [LLan13, Theorem 6.4.1.1]. In particular, there
exists a dual semiabelian scheme A" (in the sense of [Lan13, Theorem 3.4.3.2])
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p-adic L-functions for unitary groups 21

together with a homomorphism A : A — A", a homomorphism ¢ : Op ®z, —
Endyer(A), and a K (P)-level structure on A\, such that the restriction of (A,
A, L, o) over Mg represents the universal tuple (that is, the tautological tuple in
the sense of [Lan13, Theorem 6.4.1.1(1)]).

We define My, to be the scheme over M whose S-points classify the B (Z,,)-
orbits of Op ® Z,-injections ¢ : LT ® p,r — A"[p"]/s of group schemes with
image an isotropic subgroup scheme. We write My, for its restriction over M.
The group By (Z,) acts on M, on the right through its quotient Ty (Z,/p"Z,).
We let My ; be the pullback of Mg, over MY', and let M, ; be the pullback over
My .. Generally, the scheme My, (respectively M, ;) is étale and quasifinite
but not finite over M" (respectively MY" ;). We continue to denote by s, the
inclusions Mg, ; <> Mg, and My, ; <> My, determined by these restrictions.

Let BY C Gz, be the Borel that stabilizes L* and such that

B* -G, xBy CG, x H, (13)

where the map to the first factor is the similitude character v and the map
to the second is projection to H. Let B C B* be the unipotent radical. Let
I° C G(Z,) consist of those g such that g mod p” € BY(Z,/p"Z,), and let
I, C I? consist of those g projecting under the surjection (13) to an element in
(Z,/p"Z,)* x B4(Z,/p"Z,). Then I°/I, — Ty(Z,/p"Z,). The choice of
a basis of Z,(1) naturally identifies Mg, JF (respectively Mg, ;) with M; g» /F
(respectively M; k» . P = S1.x0 (G, Xp)), and MK,_ JF (respectively MK,_,L /F)
is the normalization of MY , (respectively Mg’, /F) in Mg, . (respectively
Mk, ./ F). Since it should therefore cause no ambiguity, we also put K, = I, K”.
We similarly put K? = I°K?.

Note that under the isomorphisms (9) and (10), B* is identified with the group

Bt — G,

~[(AB _ A eGL,,,(0,) is upper-triangular
x l—[ l—[ {(O D) € GL,, (Ou) - D € GL,,,(O,,) is lower-triangular | *

weX, i=1

(14)

2.6. Modular forms. We define spaces of modular forms for the groups G
and various Hecke operators acting on them.

2.6.1. The groups Gy and Hy. Let V = L ®C. The homomorphism % defines a
pure Hodge structure V = V=19 VO~! of weight —1. Let W = V/ V%=L This
is defined over the reflex field F. Let A, C W be an Op-stable So-submodule
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such that Ap ®s, C = W. Let Ay = Homy,, (Ao, Z,) (1)) with Op ® Sg-action:
bRs)f(x) = f(b*sx).Put A=Ay D Ay, and let (-, )y : A X A = Z,y(1)
be the alternating pairing

((x1, f1)s (2, f2))ean = S2(x1) — fi(x2).

Note that A and A are isotropic submodules of A. Note also that the O z-action
on A is such that (bx, y) ., = (x, b*y)..- Let Gy be the group scheme over So

can

such that for any Sp-algebra R

_ x . (8%, 8Y)ean = VX, ¥Y)eans
Go(R) = {(g, V) € GLo,gr(A ®s R) x R* Vx.y € A®s R -

Let Hy C G be the stabilizer of the polarization A = A, @& A;. The projection
Hy — G, x GLp,gs,(Ay) is an isomorphism (the projection to G,, is the
similitude factor v). There is a canonical isomorphism V = A ®, C of O3 ® C-
modules that identifies V~"* with Ay ®s, C and V*~! with Aj ®s, C and
the pairing (-, -) with (-, -).,,, and so identifies G,c with Gg,c. Let C C G
be the centralizer of the homomorphism % and set U,, = U, := C(R). The
identification of G ¢ with G ¢ identifies C(C) with Hy(C).

2.6.2. The canonical bundles. Let A be the semiabelian scheme over M as
in Section 2.5 and let A be the associated dual semiabelian scheme. Let w be
the Opper-dual of Lieyer AY. The Kottwitz determinant condition implies that @
is locally isomorphic to Aj ®sy Oper as an Op ® Oyer-module. Let

& =TIsomp, 0

i (@, O (1), (47 B Oy, Oy (1),

This is an Hy-torsor over M¥". Let w : £ — MY be the structure map. Let R
be an Sp-algebra. An R-valued point f € £ can be viewed as a functorial rule
assigning to a pair (A, €) over an R-algebra S an element f(A,¢) € S. Here
A is a tuple classified by Mg (S) and ¢ is a corresponding element of £(S). We
letE = €& X por My, and let 7, : £ — Mg, be its structure map. Sections of
the bundle x, ,O¢, have interpretations as functorial rules of pairs (X, ¢), where
X = (A, ¢) is a tuple classified by Mg, (S) and ¢ is a corresponding element in
E(S).

2.6.3. Representations of Hy over S,. Recall that K’ is the Galois closure of /C,
and let p’ C Oy be the prime determined by incl,. Let

So = So ®oy.,, Ox.p)-
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p-adic L-functions for unitary groups 23

(So Sy = K'if O =@ and Sy = O () if O = {p}.) The isomorphism O ®

Sy —> I1 So,a @ s > (0(a)s)sex,, induces a decomposition

oeXc
Op®Sy — O®0 (0 S) — H Op ®0,6 So = l_[ Op.o.
oeX oeX
This in turn induces O ® Sy = ]_[06);)C Op ,-decompositions Ay ® Sy =

Hae):,c Apo and Ay ® Sy = ]_[JE):)C A({G. The pairing (-, -),, identifies A .
Homz(,,) (Aoos Z(p)(l))'

Since Sy is a PID, ¢; Ag, and e; A, are free Sy-modules, of respective ranks
a,; and b, ;. We fix an Sy-basis of ¢; Ay .. By duality, this determines an Sp-basis

of e; Ay .. This yields an isomorphism

m

Hys, — Gu x [ [[GLlowo,s(eids,) = Gu x [] []CLe,, (S0)-
oeX i=1 oceX i=1
(15)
Let By, C Hys, be the Sy-Borel that corresponds via the isomorphism (15)
to the product of the lower-triangular Borels. Let Ty, C By, be the diagonal
torus and let By, C By, be the unipotent radical. We say that a character x of
T4, that is defined over an Sy-algebra R is a dominant character of Ty, if it is
dominant with respect to the opposite (so upper-triangular) Borel B;’};. Via the
isomorphism (15), the characters of Ty, can be identified with the tuples x = (k,
(Ko,i)oesg,i<i<m)s Ko € Zand k,; = (Ko j) € ZP»i, and the dominant characters
are those that satisfy

Ko,il 2 e 2 Ko,ibgis Vo € E)C,i = 1, ., M. (16)

The identification is just

m  boi
Koi,j
ko =n"-TTTTT @
cek i=1 j=1
t = (to, (diag(toin,s -+ loiby;)oeze 1<i<m) € Ty

Given a dominant character « of Ty, over an Sp-algebra R, let
We(R) ={¢ : Hyg = G, : ¢(bh) = k(b)¢(h), b € Bp,},

where « is extended trivially to By . If R is a flat Sp-algebra then this is an
R-model of the irreducible algebraic representation of H, of highest weight «
with respect to (Ty,, B;’};). Let w € W(Ty,, Hy/s,) be the longest element in the
Weyl group and let ¥ be the dominant character of T}, defined by «"(¢) =
k(w™'t~'w). The dual

W, (R) = Homg(W,(R), R)
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is, for a flat Sy-algebra R, an R-model of the representation with highest
weight «V.

The submodule W, (R)Bz’o is a free R-module of rank one spanned by ¢,, the
function with support containing the big cell By, w By, (and equal to the big cell
if « is regular) and such that ¢, (wBj ) = 1; we, is a highest weight vector.
The module W,” is generated over R as an Hj-representation by the functional
£, = (evaluation at 1); wZ, is a highest weight vector. Also,

Homy, (W) (R), Wev (R)) = R

with basis the homomorphism that sends ¢, to ¢,v. (For all this, see [Hid04,
Section 8.1.2], and the text of Jantzen cited there.)

For future reference, we also note that via the isomorphism (15) the
identification of C(C) with Hy(C) identifies

U = CR) —> {(ho, (he)sex,) € Ho(C) = hg € R*, hoh,' = hy}, (17)

where the “” denotes complex conjugation on C. That is, Uy, is identified with
the subgroup of the product [, 5 GU*(b,) of full unitary similitude groups
(see Section 1.4) in which all the similitude factors agree.

2.6.4. The modular sheaves. Let R be a Sjy-algebra and x« a dominant R-
character of Ty,. Let

WM = H*OE[K] and Wr e M = nr.*of, [K]

be the subsheaf of the quasicoherent sheaf 7,0 on MY /R and MK,A /R
respectively, on which By, acts via k. (See [Hid04, Sections 8.1.2 and 8.1.3],
for this construction.) We let

* *
Wy = SL 8] Wi, M and Wy = SLxS7 Wr i, M- (18)

These are the respective restrictions to the toroidal compactifications of the
Shimura varieties Mg 1, and Mk,  , of the sheaves w, y and ;.. y , extended
by zero to the full moduli space. We will use the same notation to denote the
restriction of these sheaves over Mg ; and Mg, ;.

2.6.5. Modular forms over Sy of level K. Let R be a Sp-algebra. The R-module
of modular forms (on G) over R of weight k and level K is

M (K; R) = HO(M}?fL/R, Wy).
The Kocher principle [Lan16] and the definition (18) implies that
M. (K; R) = H' (Mg 1 /. @) (19)
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p-adic L-functions for unitary groups 25

except when Fy = Q and G*"/Q has an irreducible factor isomorphic to SU(I,
1). However, in this exceptional case the toroidal compactifications are the same
as the minimal compactification and therefore canonical; we leave it to the reader
to make the necessary adjustments to our arguments in this case (or to find
them in the literature). We will generally refrain from referring explicitly to this
exception.

By (19), a modular form f € M,(K; R) can be viewed as a functorial rule
assigning to a pair (A, ¢), over an R-algebra S, that is an S-valued point of
the Shimura variety Mg ;, an element f(A, ¢) € S and satisfying f(A, be) =
k(b) f(A, ¢) for b € By, (S).

Let D, be the Cartier divisor M —M, equipped with its structure of reduced
closed subscheme. The R-module of cusp forms (on G) over R of weight « and
level K is the submodule

Se(K; R) = HY(MY' ., @ (—Dq))

of M.(K; R). It follows from [L.anl7, Proposition 7.5] that S.(K; R) is
independent of the choice of toroidal compactification.

2.6.6. Modular forms over So[] with Nebentypus . Let ¢ : Ty(Z,) — @X
be a character factoring through Ty (Z,/p"Z,). Suppose R is an algebra over
Sol], the ring obtained by adjoining the values of ¥ to Sy (we use the analogous
notation without comment below). We define the R-module of modular forms
(on G) over R of weight «, level K,, and character ¥ to be

MK(Kra wa R) = {f € HO(MK,/Raa)r,K) e f = W(f)f Vit € TH(Zp)}

It follows from [Lan16, Remark 10.2] that the Kocher principle applies and we

have
(0[]
p

- {f e H°<MK,_/R[%], w) St f =Y f Vi€ TH(Z,,)}. (20)

(We ignore the exceptional case when F, = Q and G*"/Q contains a factor
isomorphic to SU(1, 1). On the other hand, we are using the fact that the Mg, we
have defined here is a special case of the ordinary locus of [Lan18].) A section
f € M.(K,,¥; R) can be interpreted as a functorial rule assigning to a pair
(X, ¢), over an R-algebra S, that is an S-valued point of the Shimura variety
Mk, 1, anelement f (X, €) € S, where X = (A, ¢), satisfying (A, pot, be) =
V() f(X,e)forallt € Ty(Z,) and b € By, (S).
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We similarly define the submodule of cusp forms of character v to be
SK(K!‘7 1//, R) = {f € HO(MK,/R’ a)r,K(_Doo,r)) Tt f = W(l‘)f Vt S TH(Zp)}

Here Do, is the Cartier divisor D, = MK, — Mg, with the structure of a
reduced closed subscheme (cf. [Lan18, Theorem 5.2.1.1(3)]).

2.6.7. The actions of G(AT) and G(AY). The action of G(AY) on {M'} o
gives an action of G(A?) on

IimM,(K; R) and IlimS.(K; R).
— —

kU kO

Similarly, the action of G(Ajpc) extends to an action on {MK, }k», giving an action
of G(A”) on

lim M,(K,, ¥; R) and lim S, (K, ¢; R).

K KP

The submodules fixed by K" (respectively K”) are just the modular forms and
cusp forms of weight « and level K (respectively prime-to-p level K”). (Here
we are using the fact that the toroidal compactifications are normal schemes over
Spec(R); see [Lan17, Proposition 7.5].)

2.6.8. Hecke operators away from p. Let K; = G(ZP)K]‘-’ CGAp,j=1,2,
be neat open compact supgroups. For g € G(A?) we define Hecke operators

[K28K1]: M (Kyi; R) > M,(K3; R),
[KZ,rgKl,r] : MK(K1,7'7 wa R) — MK(K2,r’ W, R)

(in the obvious notation) through the action of G(A?) on the modules of modular
forms:

(K2, gKi 1f =) [g1°f. Klgk!=| |gK!. 1)

&j 8j

In particular,

(K2, 8K Af)A L G aKY ¢e) =Y f(A L, ag; K] ¢,8).  (22)

8j

These actions map cusp forms to cusp forms.
When K, = K is understood we write 7 (g) instead of [K;gK ;] and T,(g) =
[K,,gK, ]; we drop the subscript » when that is also understood.
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2.6.9. Hecke operators at p. If p is invertible in R (so R is a Q,-algebra) we
define Hecke operators T (g) = [KgK] and 7,(g) = [K,gK,] on the spaces of
modular forms and cusp forms over R just as we did in 2.6.8. We single out some
particular operators: forw € X,, 1 <i <m, 1 < j < n;, welet tl:i,j € BY(Q,)
be the element identified via (14) with (1, (¢, ;)) where

diag(pl;,1,_;) w=w,i=1i,j<a,,
tw’,i’,j = diag(plawa lnf_/ﬁ pljfaw) w = w/vi - i/3 ] > Ay,
1, otherwise.

+
Note that 7, ; ; has the property that

AT el A

w,i,jor tw,i,j

Letr,, ;= (t,, )" We put

w,i,j

=Kt K (23)

w,i,jo "

Uw,,"j = Krt+ K U_

w,i,j o w,i,j

Hida has shown that these Hecke operators can even be defined on p-adic
modular forms and cusp forms when p is not a zero divisor but not necessary
invertible (see Section 2.9.5).

REMARK 2.6.10. To define the actions of these Hecke operators on higher
coherent cohomology of automorphic vector bundles it is necessary to use
the class of smooth projective polyhedral cone decompositions used to define
toroidal compactifications in [LLan13, Lan18]. For holomorphic forms this is
generally superfluous because of the Kocher principle [Lan16].

2.6.11. Comparing spaces of modular forms of different weight. Given an
integer a, let x, be the weight «, = (a, (0)). We define a modular form
f. € M, ,(K; R) by the rule f,(A, e) = A%, where (4, ¢) is a pair over an R-
algebra S and the isomorphism from S(1) to itself induced by ¢ is multiplication
by A € §*.

Let k = (ko, («,;)) be a weight, and put k" = (k¢ + @, (k,;)). Then there are
isomorphisms

M(K: R) " MoK R) and Mo (K, 9 R) T MoK, i R).
These maps induce isomorphisms on spaces of cusp forms, and the Hecke
operators T (g) satisfy

Ja - T@f =Iv@IT@(fa- f)
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2.7. Complex uniformization. We relate the objects defined so far to the
usual complex analytic description of modular forms on Shimura varieties. For
the identification of the adelic double coset spaces with the sets of complex
points we refer to [Kot92, Section 8].

2.7.1. The spaces. Let X be the G(R)-orbit under conjugation of the
homomorphism /. Recall that the stabilizer of & is the group U, = C(R),
so there is a natural identification G(R)/C(R) — X, g — ghg™", which
gives X the structure of a real manifold. Let Py, C G, be the stabilizer of A,.
Via the identification of G,c with G,c, which identifies C(C) with Hy(C), X
is identified with an open subspace of G(C)/Py(C), which gives X a complex
structure. There are natural complex analytic identifications

Mg 1 (C) =G(Q)\X x G(Af)/K

24
Mk, L(C) =G(Q\X x G(Ay)/K,, @9

where the class of (h', g) € X x G(A[), with g, € G(Z,), corresponds to the
equivalence class of the tuple A, . = (Ap, Ay, ¢, 1) (or X . = (Ay . &)
consisting of:

e the abelian variety A, = (L ® R)/L with the complex structure on L ® R
being that determined by A’; its dual abelian variety is A), := (L ® R)/L*,
where again L ® R has the complex structure defined by 4" and where L* =
(xeLQR : (x,L) CZ)};

e Ay : Ay — A, is the isogeny induced by the identity map on L ® R;
e ¢ is induced from the canonical action of O on L;

e 1), is the K”-orbit of the translation by g map g” : L ® A} — L ® A} =
H,(Ay, A‘;);

e in the case of Mg, ;, ¢, is the B} (Z,)-orbit of the map LT @, —
Aplpl = [,LrL#/L# = (L* ® Z,)/(p'L* ® Z,), v @ &V

g,vmod (p'L*®Z,).

Here we are using that the simple factors of G?ﬁ’{ are all of type A (see [Kot92,
Sections 7-8] for how this enters into the identifications (24)).

2.7.2. Classical modular forms. The dual of the Lie algebra of A}, is way, =
Hom¢ (L ® R, C) with the complex structure on L ® R being that determined by

h'. Recalling that L@ R —> W = A, ®s, C is a C-linear isomorphism for the

Downloaded from https://www.cambridge.org/core. IP address: 71.63.163.5, on 06 May 2020 at 09:22:42, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.4


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core

p-adic L-functions for unitary groups 29

complex structure on L ® R determined by 4, we find that there is a canonical
Op ® C-identification g : Wy = Ay ®s, C.If h' = ghg™", then g, (1) =
go(g~'A) is an Oy ® C-identification of w4y, with Ay ®g, C. The complex points
of the Hy-torsors £ /Mg, and &, /Mg, ;. are then given by
EC) =GQ\GM) x Hy(C) x G(Ay)/ UK
E(C) =GQ\G(R) x Hy(C) x G(Ay)/ UK.,

with the class of (g,x, gs) € G(R) x Hy(C) x G(A) corresponding to the

(25)

classes of

(Aghgr g, (XE0(g71), v(2)))
and

Xghg g, (XE0(87), (X)),
respectively.

As C is a Z,-algebra via ¢, a weight « modular form over C is therefore
identified with a smooth function ¢ : G(A) x Hy(C) — C such that ¢(yguk,
bxu) = k(b)p(g,x) fory € G(Q), g € G(A), x € Hy(C),u € Uy, b € By, (C),
and k € K or K,. The space

W, (C) ={¢ : Hy)(C) — C : ¢ holomorphic, ¢ (bx) =« (b)¢p(x) Vb € By, (C)}

is the irreducible C-representation of H, of highest weight x with respect to
(T, B;’};) (this is the Borel-Weil theorem), so a weight ¥k modular form is also
identified with a smooth function f : G(A) — W, (C) such that f(yguk) =
u'f(g) fory € G(Q),u € Uy, and k € K or K,. Here U, acts on W, (C) as
ugp(x) = ¢(xu). The connection between f and ¢ is f(g)(x) = ¢(g, x). The
condition that the modular form is holomorphic can be interpreted as follows.
Let g = Lie(G(R))¢, and let g = p~ @ € @ p* be the Cartan decomposition for
the involution 4 (v/—1): ad h(~/—1) acts as £4/—1 on p*. The identification of
G (C) with Go(C) identifies Lie(Py(C)) with € @ p™, and so f corresponds to a
holomorphic form if and only if p~ x f = 0.

Lety : Tu(Z,) — @X be a finite character that factors through Ty (Z,/p"Z,).
The condition that a modular form have character ¢ becomes f(gt) = ¥ (¢) f(g)
for all t € Ty (Z,), where the action of ¢ comes via (13).

2.7.3.  Hecke operators. The actions of the Hecke operators in 2.6.8 and 2.6.9
correspond to the following actions on the functions f : G(A) — W,(C): the
action of [K,g K] is just

£~ Y flegg), Kigki=| |gKi, (26)
8j

and similarly with K; replaced by K; .
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2.8. Igusa towers. Let [ = {p}. Recall A and w from Section 2.6.2. Recall
that the hypothesis (2.2.1) implies that the completion of incl,(Sg) is Z,; in this
way we consider Z, an Sg-algebra. Let k > 0 be so large that the kth-power of
the Hasse invariant has a lift to a section E € M.« (K; Z,). (See [Lan18, Section
6.3.1] for the definition of the Hasse invariant on the toroidal compactification.)
Put
sy, [ L]
m — K,L E .
[Lp/Pp"ZLp
Let Sfjl = Mk, L[é] /z,/p7,> this is an open subscheme of S,,, and S, is dense
in the special fiber of MY, (this follows from our hypotheses on the moduli
problem and the discussion in [Lan18, Section 6.3.3]). For n > m let T, ,,/S.
be the finite étale scheme over S,, [Hid04, Section 8.1.1] such that for any S,,-
scheme §
Tym(S) =Tsomg(L™ @ pwpr, A'[p"]°),

where the superscript ° denotes the identity component and the isomorphisms are
of finite flat group schemes over S with Oy ® Z,-actions. The scheme T, ,, is
Galois over S,, with Galois group canonically isomorphic to H(Z,/p"Z,). The
collection {T, ,,}, is called the Igusa tower over S,,.

2.9. p-adic modular forms. Let D, , be the preimage of D,, = S,, — S?n
(with reduced closed subscheme structure) in T, ,, (the preimage is also reduced
because the morphism is étale). For a p-adic ring R (that is, R = 1(&1’" R/p™R),
let

Vn,m(R) = HO(Tn,m/R7 OT,,_m) and V,El;;p(R) = HO(Tn.m/Rs OT (_Dn,m))

n,m

The group H(Z,) acts on each through its quotient H(Z,/p"Z,), the Galois
group of T, ,,/S,,. The R-module of p-adic modular forms (for G) over R of
level K7 is
V(K”, R) = limlim V,_, (R)%1%»
T

and the R-module of p-adic cusp forms (for G) over R of level K? is

V(K?, R)™P = lim lim VP (R)% @),
——
The group Ty (Z,) = Bu(Z,)/B},(Z,) acts on these modules.
A p-adic modular form over R can be viewed as a functorial rule that assigns

an element of a p-adic R-algebra S to each tuple (A, ¢) over S, where A =
(A,) € Liilsm(S) and ¢ = (¢,.m) € 1<i£1m 1(£nn T, . (S) with each ¢, ,, over A, .
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2.9.1.  p-adic modular forms of weight k and character . Let L' C @p be the

extension of Q, generated by the images of all the embeddings of K into @p,
and let (O’ be its ring of integers. Let

Ao,
K = (Ka,i)ael)c,léigm, Koi € Z5

We denote also by « the (O'-valued character of Ty (Z),) defined by

m Ao
«=T1 ] T e
wlp o€l i=1 j=1
o=Pw
t = (diag(ty,i1s - - - twisaw, Nwipi<i<m € Tu(Zy).

Ify : Ty(Z,) — @p * is a finite-order character, then we define an O'[]-valued
character «, of Ty (Z,) by k() = ¥ (t)k(¢). For R a p-adic ring that is also an
O'[{]-algebra, the spaces of p-adic modular forms and cusp forms of weight
and character Y are

VoK, ¥, R)={f e V(K',R) : t- f=k,@)f ¥Vt € Ty(Z,)}
and
VKcusp(Kp’ U, R)={f € V" (K", R) : t - f = ky(t)f Vt € TH(ZP)}.

As a functorial rule, a p-adic modular form of weight « and character i satisfies
f(A, ¢ot) =xy(t)f(A, @) forallt € Ty(Z,).

2.9.2. The action of G(A%). The action of G(A}) on {ME',  }k» induces an
action on {S,,} k» and on {T,, ,,},. x», and these actions give an action of G(A’;) on

1 P 1 P
lim V(K”, R) and lim V. (K", ¥, R)

K? Kr

and on their submodules of cusp forms. Indeed, while the lift E is not necessarily
a Hecke eigenform, its reduction mod p is invariant under G(A?). This implies
that the spaces of p-adic modular forms do not depend on the choice of
lift. (See [LLan18], especially Sections 8.1.4 and 8.3.6, for a more canonical
construction of this action.)

The submodules fixed by K? are just the p-adic modular forms and cusp forms
of weight x and prime-to-p level K”. (Here we are using the fact that the Igusa
varieties are normal schemes over Spec(R); see [LLan18, Theorem 5.2.1.1].)
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2.9.3.  Hecke operators away from p. Let K jp C G(Af’c), Jj = 1,2, be neat open
compact supgroups. For ¢ € G(A}) we define a Hecke operator [K; g K] on the
spaces of p-adic modular forms and cusp forms just as in Section 2.6.8.

2.94. Modular forms as p-adic modular forms. Let 1 = {p}. Under
Hypothesis 2.2.1, the completion of incl,(S(,) is Z,, so incl, identifies Z,
as an S,)-algebra and OO as an Sp-algebra. As Op ® Z,) = O, we have

0RO = (0,)®0)" = l_Il_IOw@O’ — 1_[ H HO = 1_[ HO,'
wlp i=1 wlp o€l i=I oeX i=I
Po=Puw
The choices in Sections 2.6.3 and 2.2 induce Og ® O’-decompositions

m

A @5, O = ] [[eidos ®5,0 = [] [T

oeX i=1 oeX i=1

and

Lt ®Z,, O = l_[ HeiLw ®Zp O = 1_[ H(Ow ®Zp O'yewi

wlp i=1 wlp i=1

=TT 17 [T

w|lp oeXc i=1
Po=buw

Equating these identifications yields an Oy ® O'-identification Ay ®s, O =
Lt ®z, (. Recalling that Hy C Gy is the stabilizer of the polarization A =

Ao @ Ay and hence that Hy,o - G, x GLo,g0 (Ag ®sy O), this then
determines an isomorphism

HO/O’ —N) Gm X H/(Q/
which is given explicitly in terms of (12) and (15) by

1_[ V- fgaj,i>

oeXc wlp
Po=pw

HO/O’ 3> (v, (8o.i)oesk) H> <V, ( ) € G, x Ho, (27)

where we have used the identification

GL,(0, ®z,0) — [] GL.O).

0EXK, Po=Puw

This identifies By, = GuxBy,0, B = By ,0» and Ty, ;o0 = G xTy o

u
Ho 0
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To each weight k = (ko, (k,,;)) as in (2.6.3), we associate a «,, as in 2.9.1:

Kp = (Kac,i)-
Note that k,.; € Zbrei = 7% Ift € Ty(Z,), t = (diag(tu,i1s - - - » twiay,)» then

m  Qu,i

Kp(t) = l_[ H HHU(fw,i.j)K"‘i"-

wlp o€l i=1 j=I

o =Pw

Note that if x = (o, 1) € Z; x Ty(Z,) C Ty, (O'), then

K(x) = tg‘)/(p(fl), co = Ko+ Zicg,,-,j.

o,i,j

As we explain in the following, for ¢ : Ty (Z,) — Q, a finite-order character
and R a p-adic O'[yr]-algebra, if « satisfies the inequalities (16), then the
modular forms over R of weight « and character i are p-adic modular forms
of weight « and character .

Fixing G,, = Spec(Z[x, %]) as usual yields an identification p ,» = Spec(Z|[x,
1]/(x?" — 1)) for each n > 1, and hence an identification Liez (1) = Zx 4.
For any scheme S, this identifies Lieg(u,») with Oy, compatibly as n varies. If
n>=m,SisaZ,/p"Z,-scheme, and ¢ € T, ,,(S), then this identification gives
an isomorphism

Lie(¢) : LY ® Os = L* ®@ Lies(u,n) —> Lies(A)s[p"]°) = LiesAJ;.

The identification Ay ® Z, = L* gives (Lie(¢)",id) € &,(S). If f € M. (K,,
¥; R) for R a p-adic O'[{]-algebra, then the value of the p-adic modular form
fp-adic determined by f on a (p-adic) test object (A, ¢) over a p-adic R-algebra
Sis

fp—adic(év ¢) = Llnf(éma ¢m,m,r3 (Lie(¢n1,m,r)va ld)) [S LLHS/PmS = S’

m

where for n > max{r, m}, ¢, ., is the isomorphism L* ® - N A/Vs[p’]°
determined by ¢, ,,. If t € Ty (Z,) then Lie(¢ o 1)” =t~ - Lie(¢)", so

(t : fp—adic) (A, ¢)
= L&n f(énn <pm,m,t o t’ (Lie((l)m,m ] t)\/, ld)) = w(t)Kp(t)fp—adic(é9 ¢)7

hence f), .ic 1S a p-adic modular form of weight «, and character . Clearly,
if f is a cusp form, then f,..qc iS a p-adic cusp form. (A modular form can
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be a p-adic cusp form but not be cuspidal. A simple example is the critical p-
stabilization E}, (z) = Ex(z) — Ex(pz) of the level 1 weight 2k > 4 Eisenstein
series E,;.) Also, the corresponding R-module homomorphisms

M (K, ¥ R) = Vi (K", ¥, R) and  S.(K., ¥; R) = Vo™ (K”, ¢, R)
(28)
—these are injective because, as already noted, S; is dense in the special fiber of
MY', —are compatible with Hecke operators in the sense that

(T(8) -+ f)padic = I@ITT Q) - fp-adic (29)

for g € G(AY).
Note thatif k" = (kg+a, (k,,;)), then K; = k,. Furthermore, for f € M, (K; R)
and f' = f,f € M. (K; R) (see 2.6.11),

fp—adic = fp/—adic'

2.9.5. Hecke operators at p. Hida [Hid04, 8.3.1] has defined an action of the
double cosets u,,; ; = B}, (Z,)t,; B}, (Z,) on the modules of p-adic modular
forms and cusp forms; this action is defined via correspondences on the Igusa
tower (see also [SU02]). Moreover, as Hida shows, if R is a p-adic domain in
which p is not zero, « asin Section 2.9.1, and f € M (K,, ¥; R),thenu,,; ;- f €
M (K., ¢; R) and

—1
uw,i,j : f = |Kn0rm(tw,i,j)| D Uw,i,j N fs Knorm = (K(r,i’ - ba,i’)- (30)
);

We put

m n;

up= [T Twwes

weZ, i=1 j=1

and define a projector
e =limu". (31
> P

n

2.9.6. Ordinary forms. Let R be a p-adic ring. The submodules of ordinary
p-adic forms over R are

VOYK?, R) =eV(K", R), and V““P(KP R) =eV(K’, R),
and those of weight « and character y are
M (K,, ¥; R) = eM(K,, ¥; R), SX(K,.¥: R) = eS. (K., ¥: R),
VIUK?, ¥, R) = eV (K", ¥, R),  VIUUP(KP 1, R) = eV (KP, , R).
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Hida’s classicality theorem for ordinary forms establishes that if R is a finite
O’'[y]-domain (respectively a finite O'-domain) then

VIASP(KP 4, R) = SY(K,, ¥ R)
(respectively Vde’CUSP(K" ,R) = S™(K,; R)) (32)

if Koiay; + Koc,iby; > n;r; Vo € E]C, 1 < ] < m.

This theorem (with more precise inequalities on & o, + Koc.ip,,) 15 proved
in [Hid04, Hid02] assuming conditions denoted (G1)—(G3) (see [Hid02, Section
7]), which were subsequently proved by Lan in [Lanl13]. (Theorem 6.4.1.1
of [Lan13] contains (G2) and part of (G1). The remaining (projectivity) assertion
in (G1) is contained in [Lan13, Theorem 7.3.3.4]. Condition (G3) is proved
in [Lanl13, Section 7.2.3].) Let R be as in Equation (32) and let O" denote
the integral closure of Z,,, in R. The fraction field Frac(O™) of O™ is a number
field over which S, (K,, ¥; R) ® Q has a rational model, given by the space
of Frac(O™)-rational cusp forms of type « and level K,. The intersection of
this space with S™(K,, ¥; R) is an O*-lattice S™(K,,¥; O"). Given any
embedding ¢ : OT < C, the image of S®(K,, ¥; OT) in the space S, (K,,
Yr; C) will be called the space of ordinary complex cusp forms (relative to ¢) of
type « and level K,.

2.10. Measures and A-adic families. We recall p-adic measures and their
connections with Hida’s theory of A-adic modular forms.

2.10.1. p-adic measures. Let R be a p-adic ring. The space of R-valued
measures on Ty (Z,) is

Meas(Ty(Z,); R) = Homgz (C(Ty(Z,), Z,), R),

where C(Ty(Z,), Z,) is the Z,-module of continuous Z,-valued functions on
Ty(Z,). Note that C(Ty(Z,), R) = C(Tu(Z,), Z,) ®z,, R, so we also have

Meas(Ty(Z,); R) = Homg(C(Ty(Z,), R), R).

More generally, if M is a complete R-module we can define the R-module of
M-valued measures in the same way. The R-module of M-valued measures is
naturally identified with R[7(Z,)] ®r M the identification of a measure u
with an element f of the completed group ring is such that for any continuous
homomorphism x : Ty(Z,) — R*, u(x) = x(f), where x (f) is the image of
f under the homomorphism R[[Ty(Z,)]] — R induced by .
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2.10.2. A-adic forms. Let
Ap = O'Tu(Z)].

Both V(K”, R) and V“P(K”, R), R a p-adic O’-algebra, are Apy-modules
via the actions of Ty(Z,) on them. A Agy-adic modular form over R is a
n € Meas(Ty(Z,); V(K?; R)) such that u(t - f) =1t - u(f) forall t € Ay.
In particular, it follows that if R is an O'[y/]-algebra, then u(xy) € V, (K7,
¥, R). A Ag-adic cusp form is defined in the same way, replacing the p-adic
modular forms with cusp forms. Similarly, an ordinary Ag-adic modular form
or cusp form is also defined in the same way, replacing the modular forms and
cusp forms with the ordinary forms. Clearly, if u is a A-adic modular form,
then ep (the composition of u with the R-linear projector V(K”, R) — eV (K?,
R) = V°(KP, R)) is an ordinary A -adic form. Let

S(K”, R)
= {ordinary A p-adic cusp forms u € Meas(Ty (Z,); yordeuse(gP - RY)Y.
The Hecke operators in 2.9.3 and 2.9.5 act on S®(K”, R) through their actions
on Vord,cusp(Kp’ R)

Let A C Ty(Z,) be the torsion subgroup. Since p is unramified in C by
hypothesis, (12) induces an identification

A _”) l_[ n(k;)awj

wlp i=I

where k,, is the residue field of O,. In particular, A has order prime-to-p,
so SUY(K?, R) decomposes as a direct sum of isotypical pieces for the -
characters w € A of A:

S™(K", R) = (P STU(K”, R).

weAh

Let W C Ty(Z,) be a free Z,-submodule such that T4 (Z,) is isomorphic to
A x W.Then Ay = O'A x W] = A°[A], where

A =O'TwW].

Each S(K”, R) is a A-module.
LetR C @p be a finite (0’-algebra and let

A% = A’ ®o R = R[WI.
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Theorem 7.1(5) of Hida’s paper [Hid02] asserts (again, under conditions (G1)—
(G3), which were proved in [Lan13]) that

Sffd(K”, R) is a free A%-module of finite rank, (33)

and for any finite character ¢ : W — @: trivial on W?' and « as in 2.9.1
satisfying the restriction in (32),

(Sy(K?, R) ®& RIVD /Py Sy (K", R) ®x RV
S, $ (K, ww, W, RIY) 34

is an isomorphism, where p,, is the kernel of the homomorphism A% ®g
R[] — R[] induced by the character « and w, € Ais Kla.

REMARK 2.10.3. Clearly, one can include types (that is, irreducible
representations Wy of compact open subgroups of Kg C K?, for some finite set
S of primes) in the definition of A-adic cusp forms, and we write the module
of A-adic cusp forms of type Wy as S“(K?, W, R). It can be shown that the
analogues of the maps (34) in this context are also isomorphisms, using the fact
that p,, is generated by a regular sequence.

3. The PEL data and restriction of forms

In this section, we discuss restrictions of modular forms from a larger unitary
group to a product of unitary groups, which is important for interpreting the
doubling method (first introduced in Section 4.1) geometrically.

3.1. The PEL data. Let P = (K,c, O, L, {-,-),h) be a PEL datum of
unitary type associated with a hermitian pair (V, (-, -),/) as in Sections 2.1, 2.2,
and 2.3, together with all the associated objects, choices, and conventions from
Section 2. In particular, the index m equals 1. In what follows we will consider
four unitary PEL data P; = (B;, %;, Og,, L;, (-, -);, h;) together with Oy, ® Z,
decompositions L; ® Z, = L @ L;:

e PA=P=(,c,O,L,{( ), h),Lf=L%

e ,=(K,c,O0,L,—(-,-),h(), Ly = L¥;

e Ps=(KxK,cxc,OxO,Li®Ly, (-, ), ®(, ), hi ®hs), Ly = LT ® L5
o = (K,c,O, Ls, (-, )5, h3), LY = L7.
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Given the hypotheses, there should be no confusion with the subscript ‘i’ being
used in this section for the objects associated to the PEL datum P;.

The reflex fields for Py, P, and P; are all equal to the reflex field F of
P. The reflex field of Py is Q. We put G; = Gp, fori = 1,...,4 and
H; =GLo 5,87, (Lf’). Then G| = G, and there are obvious, canonical inclusions
G3; — G4 and G; — G| x G, which induce the obvious, canonical inclusions
H; — H, and H; — H; x H,. For K C G;(A) a neat open compact with
K = G,(Z,)K"if O = {p}, let M; x = Mg (P;) be the moduli scheme over Sq.

The choice of the O,,-decomposition of L determines Oj, ,,-decompositions
of the modules L¥ = L, Rosz, O,, and so determines isomorphisms

i,w

GL,(O,) =12,
Gijz, — Gux [[ {GL.(O,) x GL,(0,) i =3, (35)
wexp GLZn (Ow) i = 4,
and

GL,, (O,) i=1,

~ GLh (Ow) i = 2a
H . 36
S lw_[[ GL,, (O,) x GLy,(0,) i=3, 0

GL,(O,) i=4.

The canonical inclusions in the preceding paragraph just correspond to the
identity map on the similitude factors and the obvious inclusions of the GL-parts
(being the diagonal map in the case of the inclusions G; < G4 and H; < H,).

Let K ,.D - Gi(A?) be neat open compact subgroups. Let K; = Kl.D ifd=0
and K; = Gi(Zp)Ki':' otherwise. If K3D - 1(4D N Gs (AE’), then there is a natural
So-morphism

Mg, — Myk,, A= (AL (,a) > A, = (A, L, todiag, oK), (37)

where diag : K < K @ K is the diagonal embedding. Lete; € O @ O, i =1,
2, be the idempotent corresponding to the projection to the ith factor. If K 3D -
(K]D X KZD) N G3(A?), then there is a natural Sg-morphism

M; k, — M, Xsq M, k,,

(38)
AZ (A7 )‘41 L7a) '_)(Ap A2) = (Al’ )‘4171'17 al) X (A27 )"29 L2, (XZ)»

where A; = 1(e;)A (s0 A = A X Aj), A =1V (e;)orot(e;), t; is the restriction of
¢ to the ith factor, and ;5 : L; ® A? - H, (A, A?) is the restriction of «;
toL; ® AJ‘;’ Cc LA = (L, ®A?) DL, ® A?) composed with the projection
H (A, A7) > H (A, AT).
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For suitably compatible choices of polyhedral cone decompositions, the
morphisms (37) and (38) extend to maps of toroidal compactifications [Har89,
Proposition 3.4]. (Although [Har89] only develops the theory in characteristic
zero, the polyhedral cone decompositions used to define the toroidal
compactifications in Lan’s book [Lanl3] are independent of characteristic.
Thus, the arguments of [Har89] go through without change.)

3.1.1. Level structures at p. The definitions of level structures at p in
Section 2.5 for the PEL data P; are compatible, and the morphisms (37) and (38)
extend to Sg-morphisms with each M; k, replaced by M; ¢, = Mg, (P;).

3.1.2. The canonical bundles. To define the groups Gy, and H,; as in
Section 2.6.1 in a compatible manner, we need to specify the choice of the Ag; C
W, =V,/ Vio’fl, where V; = L; ® C with the Hodge structure defined by the
complex structure on L; ® R determined by /;. As V| = V with the same Hodge
structure we take A, = Ay, but since V, = V; with the Hodge indices reversed
(so V"' = V') we take Ay, to be the image of AY in W, = V,/V," "' =
V,/V,"* using the canonical identification V"' = V%! = AY ®, C. Then
A; = A with its canonical pairing, and A, = Ay @ (Ay)" = A with its canonical
palrlng We then set A0,3 = A0,4 = A0_1 D AO,Q and A3 = A4 = A] D Az.

The fixed decompositions of Ay and Ay as Op ® Z,-modules then determine
compatible isomorphisms

GL,,(O,) i =1,
~ GL,, (Ou) i=2,
Hy,; G ! 39
by T X 1—! GLi(Ou) xOL,, (O i=3, O
GL,(O,) i =4.

There are canonical inclusions Hy3 < Hy4 and Hy; — Hy, x Hy, which
correspond to the obvious inclusions under the isomorphisms (39). They both
induce the identity map on the G,,-factor; on the GL-factors they induce the
diagonal mapping and identity map, respectively. This gives similar inclusions
among the (lower-triangular) Borels Bp,, and the (diagonal) tori T7,,. In
particular, a dominant character « of Ty,, or a pair k = (ki, kz) consisting of
dominant characters «, of Ty,, and k, of Ty, restricts to a dominant character
of Ty, ,, which we also denote by «.

Let 7r; : & — Mg, be the canonical bundle. The maps (37) and (38) extend to
maps of bundles

Ex— & (A A La,e)—> (A, AL odiag,aKE, €), (40)
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and

53 —>51 X 50 52, (41)
(A7 )‘41 L, a, 8) = (Al9 )"11[17 oy, 81) X (A27 )"21 L, 02, 82)7

where ¢; = e; o € o t(¢;). There are similar maps of the bundles &;, = & X por

M; g,, with level structure at p.

3.1.3. The Igusa towers. Let T, ,,;/Snii =1,...,4, be the Igusa tower for
M, g, as in 2.8. The maps (37) and (38) extend to maps of Igusa towers in the
obvious ways:

Tn,m,3 — Tn,m,4a (A? ¢) = (A4’ ¢) (42)

and
Tn,m,3 - Tn,m,l XZF Tn,m.Z’ (Aa ¢) = ((Al’ ¢l)’ (é27 ¢2))? (43)

where ¢; is the restriction of ¢ to L ® p,» composed with the projection to

AV,

REMARK 3.1.4. As explained in [HLS06, Section 2.1.11], the inclusion (42)
does not restrict on complex points to the map i3 of Shimura varieties determined
by the inclusion of G; in G4. For each prime w of F* dividing p, let

l, 0 0 0
oo 01,

we=|o o1, o |
01, 0 0

v, = (¥, uwip € G4(F,). Then the inclusion (42) is given by i; composed with
right translation by yy, . (See map (73).)

When working with p-adic modular forms in subsequent sections, we will
consider all the 7, ,,; simultaneously, i = 1, 2, 3, 4. The collection {7}, ,,;}, or
equivalently h_r)nm 1<iLnn T, will be denoted 1g;, 1 < i < 4. Thus, if Kf’, i=1,
2,3, 4, are prime-to- p level subgroups of G; (A ;), with K} C K, K% C K| x K%,
we similarly define Igusa varieties x»/g; and inclusions

yv, 003 golgy = grlgas  isigrlgy — gxrlg X grlg. (44)

3.2. Restrictions of forms. The maps between the various moduli spaces and
bundles induce maps between spaces of modular forms.
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3.2.1.  Restricting modular forms. Let R be a Z,-algebra and « either a
dominant character of Tp,, or a pair k = (xy, k;) consisting of dominant
characters «; of Ty,, and «; of Ty,,. Then the maps (40) and (41) yield maps
of modular forms

res; : M. (K4; R) = M, (K5; R),

and
res; : M, (K1; R) ®r M,,(Ky; R) — M, (K3; R).

Let ¥ be either a @; -valued character of Ty, (Z,/p"Z,) or a pair ¢ = (Y,

Y¥,) consisting of a @: -valued character yr, of Ty (Z,/p"Z,) and v, of
Ty,(Z,/p"Z,). Then ¥ defines a character of Ty, (Z,/ p"Z,) that we continue to
denote . Let R be a Z,[y]-algebra. The analogues of the maps (40) and (41)
for level structures at p yield maps

ress : MK(K4J? W; R) - MK(KS,ra W: R)7 (45)
and

resy : M (Kir, V15 R) Qg M, (Ko », Y25 R) = M (K3,, ¥; R).

3.2.2.  Restrictions of classical forms. In terms of the complex uniformizations
(25), the restrictions (40) and (41) correspond to the maps induced by the
canonical inclusions of G; and Hy; into G4 and Hj4 and into G; x G, and
Hy,1 X Hy,, respectively. In particular, if ¢ : G4(A) x Hy 4(C) — C corresponds
to a weight ¥ modular form on G4 of level K4, then the image of ¢ under res;
or res; corresponds to the restriction of ¢ to G3(A) x Hy3(C). Moreover, if ¢
corresponds to f : G4(A) — W, 4(C) (we include the subscript ‘i’ to indicate
that W, ; is the irreducible representation of Hy; of highest weight «), then its
image under res; or ress is just the restriction of f to G;(A) composed with the
projection W, 4(C) — W, 5(C), ¢ — ¢|u, ). The same holds for the maps res,
and resy,.

3.2.3.  Restrictions of p-adic forms. The maps (42) and (43) induce the obvious
restriction maps on modules of p-adic modular forms—which we also denote
by res;,—compatible with weights « and characters i in the obvious way, as
well as with the inclusion of spaces of modular forms and with restriction to
similitude components. In particular, the isomorphisms described above extend
to isomorphisms of spaces of p-adic modular forms (with the tensor product ®
replaced by the completed tensor product &g ).

Downloaded from https://www.cambridge.org/core. IP address: 71.63.163.5, on 06 May 2020 at 09:22:42, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.4


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core

E. Eischen, M. Harris, J. Li and C. Skinner 42

3.2.4. Base point restrictions. Let V =V, fori € {1,2,3,4}, G = Gp, the
corresponding unitary similitude group, so that (G, X) is the Shimura datum
associated to the moduli problem P;. Let J; be a torus as in Section 2.3.2, and
let (J§, hg) — (G, X) be the morphism of Shimura data defined there. Say (J,
ho) is ordinary if the points in the image of the map S(J;, hg) — S(G, X) of
Shimura varieties reduce to points corresponding to ordinary abelian varieties. If
(Jgs ho) is ordinary, then it has an associated Igusa tower, denoted T, ., (J;, ho)
for all n, m. We have Ty, (J5, ho) = S, (Jy, ho), in the obvious notation, which
is the reduction modulo p™ of an integral model of S(J;, ho); each T, ,,(J;, ho)
is finite over the corresponding S,,,.

Moreover, letting 7,,,(G, X) = T,,,(P;) in the obvious notation, there is a
morphism of Igusa towers

Tn,m(J(;v hO) - Tn,m(G’ X) (46)

Thus, for any r there are restriction maps resy; , : M, (Ki,, R) — M. ((J],
ho), R), in the obvious notation; the image is contained in forms of level r
on S(J§, ho), in an appropriate sense, but we do not specify the level. The
restriction maps behave compatibly with respect to classical, complex, and p-
adic modular forms; the restriction map for p-adic modular forms is denoted
1S, 1! ho- In order to formulate a precise statement, we write V,, ((G, X); K?, R)
for p-adic modular forms of weight k,, and level K” on the Igusa tower for S(G,
X) (respectively VK‘jfd((G, X); K?, R) for the image of the ordinary projector)
and V., ((Jg, ho), R) for the corresponding object for S(Jg, ho) (the level away
from p is not specified).

PROPOSITION 3.2.5. Let (J), ho) — (G, X) be a morphism of Shimura data,
with J; a torus, and suppose (Jg, ho) is ordinary. Let G = Gp, fori =1, 2,3, 4,
and let k be a dominant weight; let k, be the corresponding p-adic weight, as
in2.9.1. Let R be a p-adic ring.

(1) The following diagram is commutative:

«,G, X

M (K., R) —% v, (K, R)

fehj(’)‘hol respJé.hOJv

R
1€.Jsho

MK((J/9 h())v R) _— VK,)((J/9 h())v R)

Here the horizontal maps are the ones defined in (28).
(i) Let f € VK(jfd((G, X); K?, R). Suppose for every ordinary CM pair (J;, ho)
mapping to (G, X), the restriction res ; n,(f) = 0. Then f = 0.
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Proof. Point (i) is an immediate consequence of the definitions. Note that
VK‘jfd((G, X); K?, R) is the R-dual to a finite rank module over an appropriate
Iwasawa algebra, by Hida theory; thus, f belongs to a finite rank R module.
Point (ii) follows from the Zariski density of the ordinary locus in the integral
model of S(G, X) [Wed99], provided we know there are enough CM points
in the ordinary locus. But every point on the ordinary locus over a finite field
lifts (with its polarization, endomorphisms, and prime-to-p level structure) to

the generic fiber (see for example [Mo0004, Proposition 2.3.12]). O

4. Eisenstein series and zeta integrals

4.1. Eisenstein series and the doubling method. We begin this section by
introducing certain Eisenstein series and (global) zeta functions. Then we choose
specific local data and compute local zeta integrals (whose product gives the
global zeta function).

We assume throughout this section that we are in the setting of Section 3. In
particular, there is a hermitian pair (V, (-, -),) over K suchthat V = L; ® Q
and (-, -); = tracex,d(:, -)y. Then G,/Q is the unitary similitude group of the
pair (V, (-, -)y). Let (W, (-, -}y,) be the hermitian pair with W = V & V and
(9w ={,)v®—(, )y. Then G4/Q is the unitary similitude group of the pair
(W, (-, -}w). Most of the constructions to follow take place on the group G,/Q,
which we denote throughout by G for ease of notation. We write Z; to denote
the center of G;.

An important observation is that G,(A) = G;(A), so a function or
representation of one of these groups can be viewed as a function or
representation of the other; we use this repeatedly.

In part to aid with the comparison with calculations in the literature, we
introduce the unitary groups U; = ker(v : G; — G,,).

Let n = dimy V. Let Sy be the set of primes dividing either the discriminant
of the pairing (-, -), or the discriminant of /C.

Plan of this section. We begin by recalling the general setup for Siegel
Eisenstein series on G and the zeta integrals in the context of the doubling
method, explaining how the global integral factors as a product over primes of
JC. The local factors fall into three classes, which are treated in turn. The factors
at nonarchimedean places prime to p are the easiest to address: in Section 4.2
we recall the unramified factors, which have been known for more than 20 years,
and explain how to choose data at ramified places to trivialize the local integrals.

Factors at primes dividing p are computed in Section 4.3. This is the most
elaborate computation in the paper. The local data defining the Eisenstein series
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have to be chosen carefully to be compatible with the p-adic Eisenstein measure
which is recalled in Section 5.3. The local data for the test forms on G5 are
chosen to be anti-ordinary vectors, a notion that will be defined explicitly
in 8.3.5, and that provide the local expression of the fact, built into Hida
theory, that the test forms are naturally dual to ordinary forms. The result of the
computation is given in Theorem 4.3.10: we obtain p-stabilized Euler factors, as
predicted by conjectures of Coates and Perrin-Riou.

Sections 4.4 and 4.5 are devoted to the local integrals at archimedean places.
Much of the material here is a review of the theory of holomorphic differential
operators developed elsewhere, and of classical invariant theory. We prove in
particular (Proposition 4.5.5) that the archimedean zeta integrals do not vanish;
as explained in the introduction, in most cases we do not know explicit formulas
for these integrals.

4.1.1. The Siegel parabolic. Let V¢ = {(x,x) e W :x € V}and V; = {(x,
—x)eW : xeV},soW =V, ® V?is a polarization of (-, -},. Projection
to the first summand fixes identifications of V¢ and V, with V. Recall that G
acts on the right on W. Let P C G be the stabilizer of V4, this is a maximal Q-
parabolic, the Siegel parabolic. Let M C P be the stabilizer of the polarization
W =V,® V¢and N C P the group fixing both V¢ and W/ V<, so M is a
Levi subgroup and N the unipotent radical. Denote by A the canonical map A :
P — GLx(VY) =GLx(V).Then M —> GLx (V) xG,,, m — (A(m), v(m));
the inverse map is (A, 1) — m(A, 1) = diag(A(A*)~!, A), where A* = 'A° is
the transpose of the conjugate under the action of c. Also, fixing a basis for V
gives an identification A’ : N —> Her, (KC), where Her, denotes the space of
n X n hermitian matrices; with respect to this basis and the polarization above,
we obtain an identification N — (} A’I(:V )) € GL,(K).
Define §p(-) = |det o A(-)]".

4.1.2. Induced representations. Let x = @y, be a character of K*\Ag. For
s € Clet

I(x.s) = IndS%) (x (detoA() - 8, () - () "),

with the induction smooth and unitarily normalized. This factors as a restricted
tensor product

I(X, S) = ®v1v(Xva S)v

with v running over the places of Q, I,(x,, s) the analogous local induction from
P(@v) to G(Qv)a and Xv = ®w\va'
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4.1.3. Eisenstein series. For f = f,, € I(x,s) we form the standard
(nonnormalized) Eisenstein series,

E(ffe)= Y. f(re.

yeP(Q\GQ

If Re(s) is sufficiently large, this converges absolutely and uniformly on compact
subsets and defines an automorphic form on G(A). Given a unitary character x
and a Siegel-Weil section f € I(x,s) (Siegel-Weil sections are the functions
used to define the Siegel-Weil Eisenstein series, as in [Har08]), we put

fx = fx,s = f
Ef(s, g) == Ef(g).

When f; € I(x,s) is K-finite for a maximal compact subgroup K C G, the
Eisenstein series E¢ (s, g) have a meromorphic continuation in s.

4.14. Zeta integrals. In this section, we briefly summarize key details of
the doubling method, which we use to obtain zeta integrals. The doubling
method holds for general classes of cuspidal automorphic representations of
G,(A). However, in order to carry out our full p-adic interpolation, our
approach requires us (later in the paper) to place additional conditions on the
representations 7 that we consider. In particular, we will need 7 to be contained
in certain induced representations for places dividing p and in certain discrete
series representations for places dividing co.

Denote by O+ the ring of integers of JCt. Fori = 1, 2, 3, 4, we write U; (A) =
]_[; U, ., with the (restricted) products over all the places of KT and U;, the
points of groups defined over Oy+. Similarly, we write G(A) = G X ]_[; G,
and P(A) = P x ]_[;7 P,, where the (restricted) products are over rational primes
q. We can nevertheless write

G,=Q;x [[Guw: P,=Q;x [] Pu

weX), weX,

Let w be an irreducible cuspidal automorphic representation of G;(A), and
let 7" be its contragredient; it is a twist of the complex conjugate of 7 and is
therefore also a cuspidal automorphic representation. Let S, be the set of finite
primes v in O+ for which 7, is ramified. Before introducing the zeta integral for
7, we would like to explain what it means for a function in 7 to be factorizable
over places in K. However, G, is a Q-group that is not the restriction of scalars
of a group over K. We therefore choose an irreducible U,(A)-constituent
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m C m that occurs in the space of automorphic forms on Uj, and denote the
dual 7"; note that " occurs inside the restriction of 7V to U;(A). We assume
7 contains the spherical vectors for K5 . It is well known (and follows from
the unfolding computation recalled below) that the standard L-function does not
depend on this choice. We fix nonzero unramified vectors ¢, o and ¢, , in 7,
and 7, respectively, for all finite places w outside S, and choose factorizations
as in (4) compatible with the unramified choices:

~ . ~ AP .
T — n,®n; w, — 7P Rn,Qmg ;

r, — Qzu, z, — QRzu, “7)

w|p wWeSy

and analogous factorizations for 7r”. We also think of 7" as an anti-holomorphic
automorphic representation of G,. Let ¢ € ¥ " o en”k . we think of ¢ and
¢" as forms on G; and G, respectively. We suppose they decompose as tensor
products with respect to the above factorizations:

v=QRe: ¢ =R (48)

with ¢, and ¢ equal to the chosen ¢, o and ¢, o whenv ¢ S,. We write equalities
but the formulas we write below depend on the factorizations in (47) and their
counterpart for 7”.

In Sections 4.3 (respectively 4.4—4.5), we will choose specific local
components at primes dividing p (respectively at archimedean places). These
will turn out to be anti-ordinary (respectively anti-holomorphic) vectors:

o=Qe=Q o o=Qu=-Qe @

wlp w|p w|p wlp
and
9o =) 0 =00,i 0= 0l =0 _. (50)
oloo oo

REMARK 4.1.5. The meaning of the notation in (49) and (50) will be explained
in Sections 8.3.5 and 8.4.4 and Section 4.4.14, respectively. Here we just note
that:

(1) ¢, (respectively (p';) is anti-ordinary with respect to a group I, (respectively
I”), in the sense to be described in Section 8.3.5 (respectively 8.4.4); and

(i1) r is an integer chosen in (60) to be sufficiently large.
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Having made the choice of irreducible constituent 7, we will henceforth forget
about the choice. In order not to make the notation too difficult to read, we will
use 7 and 7° to denote irreducible U,;(A) representations, but we will mean
irreducible constituents of the restrictions of representations of G;.

We also fix local U, (KCl)-invariant pairings (-, -), : m, x 7,/ — C for all v
such that (¢, ¢, ¢5,0>nv = 1forallv ¢ S,.

Let f = f,(e) € I(x,s). Let ¢ € m and ¢" € 7" be factorizable vectors as
above. The zeta integral for f,p, and ¢’ is

I(p,¢", f.5)

Ty

E;(s, (g1, 82))x ' (det g2)9(g1) ¢’ (82) d (g1, 82)-

-/Zs (A)G3(Q\G3(A)

By the cuspidality of ¢ and ¢” this converges absolutely for those values of s at
which E¢ (s, g) is defined and defines a meromorphic function in s (holomorphic
wherever E (s, g) is). Moreover, it follows from the unfolding in [GPSR87] that,
for any pair 7, 7' of automorphic representations of G, the map

(0, ¢ > I(p, ¢, f,5)

defines a G,(A)-invariant pairing between 7 and z’. The multiplicity one
Hypothesis 7.3.3 implies that the space of such pairings is at most one-
dimensional, and is exactly one-dimensional provided 7’ = 7 (upon restriction
to U(V)). Thus:

If (¢, ¢") = O then I (g, ¢°, f,s) = 0 forall s.

Here (e, @) denotes the standard L, pairing for the Tamagawa measure dg. So
we suppose (@, ¢") # 0. Then (¢, ® ¢°),, # 0 for all v. For Re(s) sufficiently
large, ‘unfolding’ the Eisenstein series then yields

(g, ¢", f.5) = fi(u, D (m e, "), du.
Ui (A)

Denote by fy the restriction of f to U,(A). Henceforward we assume fi(g) =

&, fo(g,) with
Jo=Jfos € L(Xv: 9), Xu=®Xw-

wlv

Then the last expression for I (¢, ¢°, s) factors as

1@, ¢, f.5) = [ 1.(pu. 9. for ) - (9. ¢"),  where

S Fos @ D)@y @), du 1)

(‘Pv» (pz)ﬂv

Iv((pvv Qozv fvv S) =
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By hypothesis, the denominator of the above fraction equals 1 whenever v ¢ S,.
We denote the integral in the numerator by Z,(¢,, ¢., f,, $).

REMARK 4.1.6. In order to define the proper arithmetically normalized period,
we want to consider the vectors ¢ € m and

1 1

¢, =9 " @y 'odeten" ® x ' odet

1

as the input to the integral. Thus, for ¢, € m, ¢, € T ® x ' o det we define

(@1, 2) to be the L, pairing of ¢; with ¢, ® x o det. Then

(@, 0))x = (@, 9.

It seems as if nothing has changed, but in the final result we will be taking vectors
of the form ¢ ® (p; that are integral with respect to a structure native to the space
7 x m ® x ! odet, and the resulting periods will differ by CM periods.

As in Section 2.3, let ¥ = {0 € X : p, € X,}. This is a CM type for K.
Throughout the remainder of this section, we take x : K*\AZ — C* to be a
unitary character such that x., = @), .5 Xo is given by

Ko@) = [[ 5z £, (z0) € [] C, (52)

oeX oeX

where k = (k;) € Z%,, and (v,) € Z*.

For the remainder of this section, we choose specific local Siegel-Weil
sections f, € I,(x,,s) and compute the corresponding local zeta integrals
(whose product is the Euler product of the global zeta function discussed at the
beginning of this section).

4.2. Local zeta integral calculations at nonarchimedean places v { p. Let
Stam = Sz U S, U Sk, where S, denotes the set of finite primes v in O+ for
which y, = ®w‘u Xw 1s ramified and Si denotes the set of finite primes in O+
that ramify in /C. Let S be a finite set of finite primes in Q such that p ¢ S and
such that for all rational primes ¢, if a prime in C* above £ is in S, then £ € S.
Let S’ be the set of primes of KT lying above the primes of S. In particular, S’
contains Sp;p.

4.2.1. Unramified case. For the moment, assume that £ # p is a finite place of
Q such that £ ¢ S. Then K, := G4(Z,) is a hyperspecial maximal compact of

G(Qp) = G4(Qy) = Hv\l G, and we choose f, = ®M fo € Li(xe, s) to be the
unique K -invariant function such that f,(K,) = 1. These sections are used to
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construct the Eisenstein measure in [Eis15]. For each prime v ¢ &', let ¢, € 7,
and ¢, € m, be the normalized spherical vectors such that (¢,, ¢;),, = 1. The
primes v ¢ S’ fall into two categories: split and inert. For split places v ¢ S,
U,, = GL,(K}); the zeta integral computations in this case reduce to those
in [Jac79] and [GPSR87, Section 6]. For inert places v ¢ S’, the computations
were completed in [Li92, Section 3]. In either case, we have

(S, X)L (@us @) for 8) = Lo(s + 3. 700, X0,

where
n—1
dyo (s, %) = duo(8) = [ [ Lo@s 4+ =1 x0 L 0}, (53)
r=0
1, is the character on K} attached by local class field theory to the extension
K./} (where w is a prime of X lying over v), and L, (s, 7, x,) denotes the
value at s of the standard local Langlands Euler factor attached to the unramified
representation 7, of U, ,, the unramified character x, of K, and the standard
representation of the L-group of U, ,. As noted on [HLS06, page 439], for each
ves,

L'U(S’ Ty, Xv) = LU(S, BC(T[U) ® Xvo de':)a

where BC denotes the local base change from U, , to GL,, (/C,) and the right-hand
side is the standard Godement—Jacquet Euler factor.

Remarks on [HLS06]. From the formula for d, ,(s) given in [Li92, Section 3],
it appears that there is a typographical error in the exponent in the formula for
d, , given in [HLS06, Equation (3.1.2.5)]. More precisely, according to the final
formula in [Li92, Theorem 3.1], the n — 1 should not appear in the exponent
in [HLS06, Equation (3.1.2.5)].

Moreover, there is a typographical error on [HLS06, page 439].
Although [HLS06, page 439] gives a base change to GL,,, the base change
should actually be to GL,. O

4.2.2.  Ramified case. Now, assume that £ € S, and let v € S’ be a prime lying
over £. By [HLS06, page 439], P, - (U,, x 1,) € P, - Us, is open in U, ,.. Since
the big cell P,wP, is also open in Uy ,, we see that (P, - (U, x 1,)) N P,wP,
is open in U, ,. As noted in [HLS06, Equation (3.2.1.5)], P,w = P,-(—1,,
1,) € P,-U;,and P,N (U, x 1,) = (1,,, 1,) € Us,. Therefore, (P, - (U(V) x
1,)) N P,wP, is an open neighborhood of w in P,w P, and hence is of the form
P, w3l for some open subset 4{ of the unipotent radical N, of P,. Let ¢, € , and
@, € m, be such that (¢,, ¢,),, = 1. Let K, be an open compact subgroup of
G, , that fixes ¢,.
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For each place v € S, let L, be a small enough lattice so that {{, contains the
open subgroup N(L,) of N, defined by

N(L,) = {(10 f)

(where we identify N with A’(N) as in Section 4.1.1) and so that

xeLv}

PUwN(Lv)g Pv'(_ln'Kv X ln) g PU‘U3,U'
Then
P,wN(L,) =P, - (Z/lv x 1,)

for some open neighborhood U, of —1, contained in the open subset —1, - K,
of U, ,. Let §;, denote the characteristic function of N(L,). As explained
on [HLS06, pages 449-50], for each finite place v of KT, there is a Siegel-Weil
section f;, supported on P,w P, such that

Jr,(wx) =38, (x)

for all x € N,.

For each of the primes v € §’, we define a local Siegel-Weil section f, € 1 (x,,
s) by

fv = fL_1 s
where
fi,8) = fi,(g- (=1, 1))

for all g € U,,. (Note that f; is just a translation by (—1, 1) € U;, = U, X
U,, = U, x Uy, of local Siegel-Weil sections discussed in [HLS06, Sections
(3.3.1)—(3.3.2)] and that, where nonzero, the Fourier coefficients associated to
fr, are the same as the Fourier coefficients associated to similar Siegel-Weil
sections discussed in [Eis15, Section 2.2.9] and [Shi97]. Therefore, this minor
modification of the choice of Siegel-Weil sections in [HLS06, Eis15, Shi97]
will not affect the p-adic interpolation of the g-expansion coefficients of the
Eisenstein series that is necessary to construct an Eisenstein measure.)

LEMMA 423. Letv € §', and let f, = f; . Then
L,(¢y, @, fu, x) = volume(U,).
Proof. The support of IL, inUy, x1,is—1,-U, x 1,,and forg € U, , x 1,,

I1,(8) = 8-1,04,x1,(8)
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where 6_;,44,x1, denotes the characteristic function of —1, - U, x 1,. Since
w,(g)p, = @, forall g € K, D —1, - U,, we therefore see that
f71”.uv <(pua 90,/)>rr,, dg

(‘pv ’ gp;)ﬂu
= volume(U4,). O

Iu(%, (P;, fva X) =

4.3. Local zeta integral calculations at places dividing p.

Plan of this section. We begin by choosing local Siegel-Weil sections at the
primes w dividing p that are compatible with the Eisenstein measure, and then
turn to choosing test vectors (anti-ordinary vectors) in the local representations
7, and ). The last six pages or so contain explicit matrix calculations that
reduce the zeta integral to a product of integrals of Godement—Jacquet type,
which can then be computed explicitly.

The reader may observe that the representations 7, and 7), like the
automorphic representations of which they are local components, are logically
prior to the local Siegel-Weil sections, inasmuch as our goal is to define p-adic
L-functions of (ordinary) families and the Eisenstein measure is a means to
this end. One of the subtleties of this construction is that a global automorphic
representation 7 automatically picks out the function whose integral is the
desired value of the Fisenstein measure. This is unfortunately concealed in the
technical details of the construction, but the reader should be able to spot the
principle at work in Section 7.5.

The calculations presented here are more general than those needed for our
construction of the p-adic L-functions of ordinary families. The p-adic place
w is assigned to an archimedean place o and thus to a signature (a,,, b,,) of the
unitary group at o; but we also introduce partitions of a,, and b,,. These partitions
can be used to study the variation of p-adic L-functions in P-ordinary families,
where P is a parabolic subgroup of G;(Q,). However, this application has been
postponed in order not to make the paper any longer than it already is, and we
restrict our attention to the usual ordinary families, corresponding to P = B a
Borel subgroup.

4.3.1. Definition of the Siegel-Weil sections. With a few minor changes, the
description of the Siegel-Weil section at p given below is the same as in [Eis15,
Eis14]. For w|p a place of K and U a K-space we let U,, = U Qx IC,,.

To describe the section f, we make use of the isomorphisms (9). The
isomorphism for G, identifies G(Q,,) with Q; X [1,e s, GLk, (W,) and P(Q))
with Q;‘ X [Toe 5, P,(K,) with P, C GLx(W) the parabolic stabilizing V<.

Downloaded from https://www.cambridge.org/core. IP address: 71.63.163.5, on 06 May 2020 at 09:22:42, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.4


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core

E. Eischen, M. Harris, J. Li and C. Skinner 52

So M(Q,) is identified with Q; X ]_[wexp GLx, (Vaw) % GL,CW(Vu‘f) (the
factors embedded diagonally in GLg,(W,)), and N(Q,) is identified with
[1,e =, Na (IC,,) with N, C P, the unipotent radical.

For w € X, let x,.1 = X, and x,2 = x;', where we identify KC,, = K=
K and where w* = w|x+ = W|x+. The pair (Xu.1, Xw.) determines a character

ww . Pn(lcw) — (Cx’ Ww ((13 g)) = Xw,l(det D)Xw,2(detA)'

Here we have written an element of P, with respect to the direct sum
decomposition W = V, @ V4. We put

Ww,s = ((13 g)) = Xw,l(detD)Xw,Z(detA”A_]D';s'

. GLx,, (Wy)
Given @,z fus € Qyex, Indp ()™ (Yus), we set

Frs@ =@ fuslew) &=, (2) € G@)). (54)

weX,

Then, as explained in [Eis15], f, € I,(x,, 5).

The choice of a level structure at p for the PEL datum P; amounts to choosing
an O,-basis of L;,, and hence a K,-basis of V,, for each w € X,. This
then determines a /C,-basis of Vlff and V,,, via their identifications with V,,
and hence a K, -basis of W,, = V,,, @ V. (This is not in general the basis
corresponding to the level structure for P, determined by that for P;.) This basis
identifies Isom;cw(Vu‘f , V) with Isomg, (Vy., V,), and an ordered choice of
this basis identifies GLx, (V,,) with GL, (XC,,). This ordered basis also identifies
GLg, (W) with GL,,(KC,), P,(IC,) with the subgroup of upper-triangular n x n-
block matrices and M,, (IC,,) with the subgroup of diagonal n x n-block matrices.

Let w € X,. To each Schwartz function @,, : Homg, (V,,, W,,) = C (so @,
has compact support), we attach a Siegel-Weil section f®» € Ind,G,an,'%(w’C)"/)ww,x as
follows. Consider the decomposition

Homy, (V,,, W,,) = Homg, (V,,, V) @ Homg, (V,, V), X = (X4, X2).
Let
X = {X € Homg, (V,, W) | X(V,,)) = VI ={(0,X) | X : V,, — V).

For X € X, the composition V,, X Vu‘f —> V,,, where the last arrow comes
from the fixed identification of V¢ with V, is an isomorphism of V,, with itself.
This identifies X with GLk, (V,,).
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We define the section f%» € IndgnL(z,”Cf:C)“’)ljfw.S by

£ (8) = som(det g)ldet gl5™ / Bu (X)X 1o (det X)[det X 12 d* X
X
(55)

(The minor difference between the definitions of the Siegel-Weil section at p in
Equation (55) in this paper and in [Eis15, Equation (21)] is due to the fact that we
use normalized induction in the present paper, while we did not use normalized
induction in [Eis15].) Linear operations are viewed here as acting on the vector
space W, on the right. We recall that X is identified with GL, (IC,)); d* X is the
measure identified with the right Haar measure on the latter. To define the Siegel—
Weil sections f,, s, we make specific choices of the Schwartz functions @,,.

Let (ay, b,) be the signature associated to w|p and L, (-, -),. For each w €
X, fix partitions

Ay = Ny +-- ny(w),w and bw = Nt(w)+1,w +--- 4 Ry (w),w-

Let f1., - - - Mrw).w be characters of O, and let p,, = (1., - - - Lrw).w) and
w=11,c x, Hu- We view each character u;,, as a character of GL,, , (O,,) via
composition with the determinant. Let

Viw = X;;,XZ,wMi,uw i = 1,...,r(w),

and let Vy = (Vl,ws ey Vr(w),w)-

Let X, C M,(O,) comprise the matrices (é By, with A € M,,(O,) and D €
M,, (O,), such that the determinant of the leading principal ny ,, + - - - + n; ,th
minor of A is in O} fori = 1,...,#(w) and the determinant of the leading
principal 741, + - - - +n; ythminor of Disin O fori =t(w)+1, ..., r(w).
Let A; be the determinant of the leading principal ith minor of A and D; the
determinant of the leading principal ith minor of D. Define ¢,, : M, (KC,,) - C
to be the function supported on X,, and defined for X = (é g) € X, by

t(w)—1

60, (X) = vy (A) - [T Wi -0 ) Ayt

i=1

r(w)—1
Vr(w),w(D) - X l_[ (Vi,w : Vij_ll,w)(Dn,(w)+1Aw+-~+n,-_,,,)-
i=t(w)+1
Let
t> max (1, ord,(cond(u;y)), ord, (cond(xy,))), (56)

weX,, 1<i<r(w)

and let I, = I,(t) C GL,(O,) be the subgroup of GL,(O,) consisting of
matrices whose terms below the n; ,, x n; ,-blocks along the diagonal are in p’,
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and such that the upper right a,, x b,, block is also in p’, . For each matrix m € I',,
with n; ,, X n;,-blocks m; running down the diagonal, we define

p(m) = [ i, (det(my)).

Let @, be the function on M,,,(KC,) supported on I,(¢) and such that
D ,(x) = py(x) for all x € I,(t). Let @,,, be the function on M,,, (KC,)
defined by

@y, (x) =y, (x) = / by, (¥)ew (—trace yx) dy. (57)

Myxn (K:w)

Note that qAﬁvw is the Fourier transform of ¢, , as discussed in [Eis15, Lemma 10].
For X = (X,, X,) € Homg, (V,,, W,,) = Homg, (V,, V4.) @ Homg, (V,,,
V4), let

¢U)(X) = ¢X,n,w(X1a XZ) = VOI(Fw)71¢1,w(_X1) . ¢2,w(2X2)-

Recall that we have identified X, and X, with matrices through a choice of basis
for V,, (coming from the level structure at p for P,). Note that &, , ,, is a partial
Fourier transform in the second variable in the sense of [Eis15, Lemma 10]. We
then define

Fu 1= [L0 1= [0 = O, (58)

We then define £, € I,(x,, s) by (54).
The following lemma describes the support of @, ,,.

LEMMA 4.3.2.

(1) Fory,, v, € I,
Gv, (V1 X12) = 1w (V1Y) X1 o X2w (et yi12) By, (X).

(i) For X = (4 B) with A € My, va,(KC), B € My, (K), C € M, (K,
and D € thth (ICw)»

®D,,(X) =2 (A)PP(B)PY ()PP (D),
with

@15)2) - ChaI'Mawxbw (Oy)» ¢1(1)3) = Cha’rMbw saw (Ow)
Supp(@Y)") S P, Mo, (O, supp(DL”) S P My, 1, (O)-

Here t is as in Inequality (56).
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Proof. Part (i) follows immediately from the definition of ¢, . It remains to
prove part (ii). Let

oo (59 5.

and

- pemnien (2)ex)

We have

‘ATC
D, ,(X) = / v (Y)ey, (—traceY ( )) dy
’ My (Kw) ¢ ‘B'D

= / b, ((;‘f ‘2)) e (—trace(@'A + B'B + y'C + §'D)) da df dy dé
x

= o)Al (B)D) (C)o (D),

where
oP(B) = / e, (—trace B'B) dB = chary, ., ©.)(B),
Mawxbw (Ou)
<1§$)(C) = / ey (—trace y'C) dy = chary,, . ©.,)(C),
Mbm Xdyy (Ow)
oV (A) = b, 0 e, (—trace a'A) du
w x(l) w O 1
= Vol(My,xa, (0,)) Y
x:(g (l))ex mod p,
X ¢, (x)e, (—trace a’A)charp;rMawqu(ow)(A),
and

oW(D) = / b, ((é (8))) e, (—trace §'A) da
x4

= Vol(M, xp, (P"))) Z
x:((l) g)e% mod pi,

X ¢, (x)e, (—trace S’D)charp;z My oy (Ou) (D) O
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4.3.3. Local induced representations. Having chosen a Siegel-Weil section for
each prime w € ¥,, we move on to the zeta integral calculations for such a w.
First, we introduce some additional notation. Let B,, € GL,, be the standard
parabolic subgroup associated to the partition a,, = ny,, + -+ + /). Let
B,, < GL,, be the standard parabolic subgroup associated to the partition b,, =
ewyt1w + + -+ Rry.w- Let Ry, 5, € GL, be the standard parabolic subgroup
associated ton = a,, + b,,. Let L, ,, = GL,, x GL,, denote the Levi subgroup
of Ry, »,- Let Ry, C R, ,, be the parabolic such that R, N L,, s, = Ba, x B, .
Recall the characters w;, from Section 4.3.1, which define characters on

GL,,,(O,) via composition with the determinant. We define characters Mi. bY

Xowhin i1 <i < t(w),

Mo =V i i 1w) +1 < i < r(w),

forallw e X,. Let

t(w) r(w)
o r_ /
lu“gu, - ®/’Li,w’ /’wa - ® M[Jy’
i=l1 i=t(w)+1
r(w)

W, =Qui, = u, Qu, .
i=1
= ® I,

wex,
denote characters on ]_[f(:"’l) GL,,,(O,), ]_[;(:“t’zw) 1 GL,,, (Oy), ]_[f(:“f) GL,,,(O,)
and [, ([T GL,,,(O,)), tespectively (again, by composing with
determinants).
For all w € X, let 7;,,, 1 < i < r(w), be an unramified irreducible
admissible representation of GL,, , (KC,,). Let B; ,,, I <i < r(w), be a character
of GL,, , (K,) such that BiwloL,  ©.) = Mi,- Let Ty = Ty ® Biw- Let

1w r(w)
GLa, GLo.
IndBa';“ (® jTi.,w) - naw and IndB;:pv“ < ® j'[i’w) — ﬂbw
i=l Y Nizt(w)+1

be irreducible admissible quotients. Similarly, let

GL,
Indg, 7, (Tay ® 7,) =

be an irreducible admissible quotient. By composition of these quotients, ,, is

realized as a quotient of Ind%” (®;(:u;) Tiw)-
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For all w € X, let 7;,, be the contragredient of t;,, and let ,5,3,,) be the
contragredient of S; ,. Let 7, , = T;yy ® B,-,w; this is the contragredient of m; ,,.
Let 7, , 7, , and 7T,, be the respective contragredients of 7, , 5, , and m,,.

Forallw € X and 1 <i < r(w),let (-, ), : miw X 7T, be the tautological

pairing of a representation and its contragredient. Let (-, ), = ®fg) (Vs
r(w)
and (-, ), = ®i=t(w)+l (+ )z, Then

t(w) t(w)
(. )qy : Indyy™ (@ n,,w> x Indj, " (@ ﬁ,,w> - C,
i=l1 i=l1
0. B = / (k). $(k))., d.
GLyy, (Oy)

and

r(w) r(w)
GLy,, GLy,, ~
(s, :Inngf ( ® 7Ti,w> X IndBZ,é’ ( ® ni,w) — C,

i=t(w)+1 i=t(w)+1

(. P)v, = / (pk), p(k))s, dk
GLhw (Ow)

are, respectively, perfect GL,, (KC,,)-invariant and GL,, (XC,,)-invariant pairings
that identify the pairs of representations as contragredients (and the pairings
with the tautological ones). With respect to these identifications, the dual
of the surjections onto 7,, and m,, are inclusions of irreducible admissible
representations
(w) r(w)
ind GLﬂw ind d GL’w nd
T, <> Indy <® yr,-,w) and 7, — IndBZil, ( ® m,w>
i=I i=t(w)+1

such that the tautological pairings

(‘9 )
are the pairings induced from (-, -), and (-, ), by composition with the
projections to m,, and m,, and the inclusions of 7,, and 7;,. Similarly,
G =5 g, ® (5 0)y,, determines a pairing (-, -),, Indc,faLu’)’vbw (774, ® mp,) X
IndguL”_ oo Ta, ® 7p,) — C that is identified with the tautological pairing and so

w

induces an inclusion

P, X T, > C and () i, x 7, > C

Tay

~ GL, ~ ~
T, < Ind Ra:,.bw (Ta, ® 7p,,)

(and hence by composition an inclusion 7,, <> Ind%" (®f("l’) 7T, »)) such that the

i=

tautological pairing (-, -), : m, x 7, — Cis the pairing induced from (., -),,
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via the projection to m,, and the inclusion of 7,. In particular, for ¢ € m, and
b € 7y, let NS IndGL (yrau ®m,,) projectto ¢ andlet ¢ € IndG " (num ®7Tp,)

be the image of ¢. Then

(D, ®)x, 2/ (9 k), @(k))w dk. (59)
GL,(O)

4.3.4. Local congruence subgroups and (anti-ordinary) test vectors. Let t
satisfy the inequality (56), and let
r > 2t. (60)

Consider the following groups:

T = {y € GL,(O,) | y mod pl, € R,(O/p, D)}, Tx= [] Tk

wex),
1_;111,,10 = {J/ € GLaw (Ow) | Y mod p;; € Baw(o/pz,o)}v Fa = 1_[ 1—:1,,),11)’
weX),
Ty = {y € GLy, (O,) | y mod p), € B, (O/p, 0, Tp=[] Ihu
weX),

Du,,hw = {V € GLn(Ow) | V mOd pfn € Raw,bw (O/pro)}

By the choice of r, the character wu,, extends to a character of both Iy and its
transpose ‘I’z such that for y in I'y or Tk, u,(y) = [T:“, ), (vii), where y =
(¥ij) is the block matrix form corresponding to the partition n = ny, + --- +
Ny w).w- Similarly, u, ~(respectively w;, ) extend to characters of I, ,, and T,
(respectively I}, and T}, w)- The same holds for ji/,, i, »and @ .
Forallw e ¥, and 1 <i <r(w),let0 # ¢, € 7y such that (k)i =

Wy, (k)i ., for all k e GL,,,(O,).Sucha ¢, ,, exists (and is unique up to nonzero
scalar) since 7;,, = T;, ® i With 7;, unramified. Let ¢) = ®l(w> ¢i.» and

oy = ®I’(:“;zw) 41 i Letg,, € IndGL“”’ (®’("’) 7T;.») be the unique function such
that:

w,W

the support of ¢, is By, (Ku) Iy, and @, () = u, )@y Vv € Ty
(61)

Similarly, let ¢, € IndGwa (®,r(u;2w) +1 Tiw) be the unique function such that:

the support Of (Pbu, iS Bgf (’Cw)thw,w and (ﬂbu,()/) = /’L/bw (y)¢2m VV € [Fbw,w'
(62)
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We assume that

the image ¢,,, (respectively ¢, ) of ¢,, inm,,

(respectively of ¢, in m;,, ) is nonzero. (63)

Let ¢3 = @y, ® P, € My, Q@ mp,. Let ¢, € Ind%’fb 7, ® 7, be the unique
function such that

the Support Of q)w iS Rau,,bw (ICw)FR,w and (Pw(l/) = M/w()/)(f’g V)/ € FR,w-

(64)
We also assume that
the image ¢, of ¢,, in m,, is nonzero. (65)
Note that

Let 0 # J)i,w € ﬁi,w be SUCh that ﬁi,w (k)q;i,w = ﬂ;,w(k)éi.w f()r all k € GLn,- (Ow)-
l:et qggw = ®f(:i)1) $:., and égw = ®f(:";fw) 1 @i We suppose that ba, € Tay»
¢», € Tp,,and ¢, € T, are such that

t(w)

the image ¢, of <]3aw in Indgi“:“’ (® ﬁi,w) satisfies ¢, (1) = ¢~>2
i=1

) (67)
the image ¢, of <]3bw in Ind?;pb"’ ( ® ﬁi,w) satisfies ¢, (1) = ¢~’2w
bw N

i=t(w)+1
and
the image @, of ¢, in Ind." (%, ® 7;,) satisfies §,,(1) = ¢, ® @y, (68)
We also suppose that
0 (V)Pw = i1, (V)P VY € Tra- (69)
One consequence of (68) and (69) is that
the support of ¢@,, contains R, », (}C,,)) Tk - (70)

All of the above conditions imposed on ¢, and ¢, will be used in our
computations of the local zeta integrals later in this section. We note in particular
that (64) and (70) (respectively (60)) correspond to condition (i) (respectively
condition (ii)) of Remark 4.1.5.

By (59),

<d)w’ égw)ﬂw = / (pr(k)7 ¢w(k)>w dk
GL, (Ow)
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By the choice of the support of ¢, in (64), the integrand is zero outside of
Ty, b, = GL,(O,) N Ry, 5, W) TRy Letk € T, 5, Then k can be expressed

as a product
= 1BY[(AO 10
—\01 0DJ\C1

with B € M,, ,,(0,), A € GL,,(O,), D € GL;,, (O,), and C € M, ,, (».,).
Then

¢w(k) = Quw ((8 g)) = 7Ta,‘,(A)¢a,,, ® nb,,/(D)d)bw’

- - AO - ~ - ~
G = . ((0 D)) = 70, (M), ® 1y, (D).
In particular,

(0w (), Bu())w = (Buys P dra, * (Pous Do),

forall k € I, ;,. It follows that

(Burs )y = VOl 1) * (Bas Pa Ve, * (Do s P ), - (71)

Here the volume Vol(I,, ,,) is with respect to the chosen Haar measure on
GL,(O,).
Similar considerations show that
~ 1(w) ~
(Pay+ B )y = YOIy ) [ [ Bio)
i=1
and
~ r(w) ~
(Do,+ Bo )y = VOITh, ) [ (Pros B

i=t(w)+1

As Vol(I'g.) = Vol(I, 5, )Vol(Iy, w)Vol(Iy, ), it follows that

t(w)

(bu» Pur, = VolT k) [ [(Biow> Biow)m, # O (72)

i=1
The nonvanishing of each (¢; ,,, ¢ ), is an easy consequence of the choice of

¢i,w and (gi,w-

REMARK 4.3.5. In Sections 8.3 and 8.4 we identify specific vectors in certain
local representations (constituents of global representations of interest) that

Downloaded from https://www.cambridge.org/core. IP address: 71.63.163.5, on 06 May 2020 at 09:22:42, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.4


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core

p-adic L-functions for unitary groups 61

satisfy the conditions imposed in this section (see especially Remarks 4.3.5
and 8.4.8). These sections, denoted ¢ and ¢.;*°"* are natural choices from
the perspective of Hida theory and (anti-)ordinary automorphic forms. The main
result of the following section therefore shows that the local zeta integral for
these natural choices of test vectors contributes a factor at p of the expected
form for a p-adic L-function.

4.3.6. The main calculation. The ordered IC,,-basis for V,, chosen above (that
comes from the choice of a level structure for P;) determines a /C,-basis for
W, =V, & V,,. This ordered basis for W,, = V,, @ V,, identifies GLx,(W,,)
with GL,, (IC,,) and identifies GLx, (V,,)) x GLk, (V,,) € GLk,(V,, & V,,) with
GL,(V,) x GL,(K,) C GL,,(K,). Note that this is a different identification
of GLk,(W,) with GL,,(K,) from the identification coming from the
decomposition W,, = V., ® Vu‘f. With respect to this new decomposition,
X no longer consists of elements (0, X) but instead elements (X, X). (The
switch between these two decompositions is often convenient in similar
computations, for example in the computations in the doubling method
introduced in [GPSR87].) Recall the Siegel-Weil section fX* defined in
Equation (58). In the computation of the zeta integrals, we replace f*** with the
translation fw+, defined by:

I, 00 0
00 01,

$78 10 01, 0| 73)
01, 0 0

(This is the translation from Remark 3.1.4.) The matrices in Equation (73) are
given with respect to the identification of GLx, (W,,) with GL,, (KC,)) introduced
at the beginning of this paragraph.

To avoid cumbersome notation, we will denote @, , ,, by @ for the remainder
of this section. The identification K, = IC$+ identifies the representation i,
with a representation 7,+ (and hence 7,, with 77,+). The sections ¢,, € m,, and
(iw € 1, are then identified with sections ¢,,+ € m,+ and (]SW € TT,+, respectively.
The local zeta integral Z,+ (¢, $w+, fw+, s), the numerator of the local factor
Lyt (pu+, Put, fur, s) defined in (51), then equals

l,, 0 0 O

s+5 0 0 01,

Z, = / X ,w(g)ldetg|wJr2 / o | (Xg, X) w
GL, (Ky) ’ GL, (ICy) 0 0 law 0

01, 0 O

X X1 X2w(det X)|det X |2 (7, (8)pu, Pu)n, d* X d* g.
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We put
Zp = 1_[ Zw = 1_[ Zw+(¢)w+, ¢w+, fwﬁ X)

wex, wex),

Given g, X € GL,(KC,), we denote by Z, = (Z|, Z}) and Z, = (Z), Z}) the
matrices in M, (IC,)) = Myxa, (KCy) X Myyp, (IC,,) given by

Z,=Xg=1Z,.2Z]
Z,=X =12}, 23],

with Z|, Z, € M, ., (K,) and Z, Z) € M, (K,). So
D((Xg, X)) = Vol(I,) '@, ,(Z}, Z))P2.,(Z}, Z)),
and

(70 (8)Pus Pudry = (T (XD Du, T (X)Pu)r, = (T (Z1)Purs Tuo (Z2) Do), -

Therefore,

Zy = Vol(I})"! / / Xoon(det Z0) X7 (det Z,)|det(Z, Zy) 3
GL, (ICy) Y GL, (Ky)

X P (2, ZY) P2 (2, Z1) (00 (Z) s Tu(Z2)Pu)m, A Z1 d™ Z,.
(74)

‘We take the integrals over the following open subsets of full measure. We take
the integral in Z, over

10 Al 0 lBl ¢
{<C1 1) (O Dl) <0 1) ‘ Ci. B € Mwaaw(lcw),

Al € GLau, (’Cw)a Dl € GLh,,, (Icw)} )

with the measure
|det A det D;*"|,,dC,d* A\d* D\d B,

and we take the integral in Z, over

1 B\ (A2 O 10 ,
{(0 1 ) (0 D2> (C2 1) ‘ C2.'Bs € My, xa, (K,

AZ € GLaw (’Cw)’ D2 € Gwa (]Cw)} )
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p-adic L-functions for unitary groups 63

with the measure

|det A, det D%"|,,dC,d* Ayd* D,d B,.

4 " A B D
D1.u(Z ,ZZ)=¢1,w<(Clgl ,2)22>), (75)

’ AN A2 + BZDZCZ AlBl
Pru(Zy, Z)) = P << D,C, CiAB, + D '

So

(76)

PROPOSITION 43.7. The product @1,y (cth, "3 ) @au (0 ¢ 40, ) is
zero unless all of the following conditions are met:

A el,, ()

Ci € p,, M, a0, (Ou)

D, € T}, (1)

B, € p,, My, s, (Oy)

Cy € My, 0, (Oy)

A € 9, My, xa, (O)
By € My, xp, (Ow)

Dy € p, My, 1, (Oy).

When all of the above conditions are met, we have the following factorization at
each prime w € X,:

¢],w(zia Z;,)CDZA,W(Z/? Zi/)<nw(zl)¢wy ﬁw(ZZ)(gw)rrw = VOI(Faw.bw) : J] : J27
(77

where

Ji = xo.u0(det AT O (D) [det DI [V y, , b, (Dfl)ngu,)nbu, (78)
Jr = x1.0(det D)@V (Ay)|det A 1B s Ty (A2)Bay ), - (79)

Proof. By Lemma 4.3.2 and the definition of @, ,,, the product

@ A1 B2D2 @ A2+BzD2C2 A1B1
bv\\C,A; D, 2w D,C, CiA B, + D,

is zero unless all of the above conditions are met. For the remainder of the proof,
we will work only with matrices meeting the above conditions. We now prove
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the second statement of the proposition. Note that when the above conditions are

met,
T2y = ((Cll 31)) “, ((Q‘; ?)) oo
Fo(Z)fu = T ((f}f ?)) 1, ((5 gz)) B

D1.(Z,, ZY)Pr(Zy, Z) (T (Z1) s T(Z2) o),

= Xz_zi)(detAl)Xlw(det DZ) <7Tw <(él Igl)> ¢w7 ﬁw ((%2 312)> $w>ﬂ ’ .

u

So

Let A € Maw(lcw)a D e Mbw(lcw)a Ce Mbu,xau,(lcw), and B € Mawxbu,(lcw)
be matrices such that

62 en) = () 6o)61)

Then
A=1-— BzCl el+ pﬁfMa,,(Ow)
CA=C, e p:UMbu,xau,(Ow)
AB = —B,D, € Mawxbw(OW)'
So

Ce p:UMbu,xau,(Ow)
B e Mawxbw (Ow)
D=D —CAB=(1+CB,)D; e (1+ pz’Mbw(Ow))Dl.

Therefore, applying the invariance conditions (66) and (69) we obtain
() een (5 7))
(e (67 e n)) o ((57) o)
[ (@) 6p)) e (504,
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(B8 (5D (D)5,
() (5)5),
(5 )7,

Note that since r > 2t, A, € p;L%JMaw(Ow) and D, € p;L%JMbw((’)w).

From the definition of ¢,, we find that the support of ¢,, € Ind%ﬁvbw (74, ®Mp,)

inside of GL, (O,,) is I, », - It follows that

- Ay, O ~
<¢wa ﬂw <( O D]I)) ¢w>ﬂ‘
= Vol(T,, »,)
{@u(1), |det A det D{" |17, (A2) ® 7y (D7 NG (D) o, -

As ¢, (1) = ¢, @ ¢, and G(1) = p,, ® ¢y, by definition,

(@u (1), Fay (A2) @ 73 (DTG0 (D), s,
= (Puns T (A2) Py Vra * (B> 7o (DT P )y, -

Consequently,

®1.0(Z1, Z) 2 (Zy, Z) (7 Z1) bus Tur(Z2) o), = VOl ,) - 1 ]2,

wsbw

where

Ji = Xow(det AT @W (D) |det D Y@y, , 7o, (DT Vo, )y, (80)
Jr = X1, (det D) @D (Ay)|det A" 112 (Bays Foay (A2) P ), - (81)

O

COROLLARY 4.3.8. The integral Z,, factors as

VARES VOI(Faw,bw) Ay D,

s+

I Z/ X2,w(det D)@ﬁ)(D)|detD|w (7Tp, (D), » ‘];b,,,)rrhw d*D
GLyp,, (Ky)

e

L= / X (det )P (A det AL % (Ba, s Far (A)Bas)r, d*A.
GLay (Kw)
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Proof. By Equation (74) and Proposition 4.3.7,
Zw = Vol(I,)™!
x / X2.u(det(A) det(D)) x, (det(A,) det(D,))
A1,A2,B1,B,,C1,C2,D1,Ds
x |det(A;) det(D;) det(A,) det(D,) |,S,,+%V01(Faw,bw
x |det A2 det Dy |, |det A" det D5 |, d* A,
X d*AydB;dB,dC,dCyd* Dy d™ Dy, (82)

)12

where J; and J, are defined as in Equations (80) and (81), respectively, and
Avel, @)
Cr €, [ [ Mo, xa, (Ow)

wlp
D2 c Fbm(t)

B, €p! 1_[ My, xp, (Oy)

wlp

C2 € l_[Mwaaw(Ow)

w|p

Ay € p;t 1_[ Mo, xa, (Ow)

w|p

Bl € l_[ Mawxbw (Ow)

wlp

Dy € p,' [ My, b, (On).

wlp

Note that for such A, and D,, |det A,|, = |det D,|,, = 1. Applying Equations
(80) and (81), we therefore see that the integrand in Equation (82) equals

s+%

X2.0(det D)DP (D) (5, (D) Bs, » B )y, | D1l
X XL (det A2) DD (A2) (b » Tay (A2)Bay ), | Aal

Therefore,
Z,, = Vol(I,) ' Vol(I,)) (Vol(M., <, (O)))*Vol(I, 5,)

~ s bw X
X / X2.0(det D@L (D) (1, (D) @b, . By, ) | Dl * d” D
GLy,, (Ky)
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X / Xion (et A)) DL (Ar) (B, - T, (A2, ),y |Aal * d A
Glay, (Ku)

w

— Vol(T, ) X / Yo.u(det DYDD (D) (1, (D)o, + B ),
GLy,, (KCy)

by
x |Dlw * d*D

< / XL (et AYOD(A) (G For (b IALTE @A, O
GLg,, ()

4.3.9. The main local theorem. In Theorem 4.3.10, we calculate the integrals
I, and I, from Corollary 4.3.8.

THEOREM 4.3.10. The integrals I, and I, are related to familiar L-functions as
Sfollows.

L (s + %, T, @ Xz,w)
e(s+3m, ®xow) L(—s+ 1 7, ® x50)
e(=s+ 37, @ x10) L (3 +5, Ty @ X10)

L (—s + %, Ta, ® Xl.,w)
Consequently, upon setting G, := Vol(XV)Vol(X¥),
L(s+3m, ®xuw) e(=s+3. 70 ®x10) L (5 +5, Ty ® X10)
e(s+ 37, ® xow) L (=5 + 2.7, @ x20) - L (=5 + 3, Ty ® X1.0)
By - Pus Pu)r,

and thus

I = - Vol(X®) - (s, . o, ),

L= Vol(XD) - (buy s Py ), -

Z, =

I, =L(s + %, ord, 7, xu) - B (P, Pu)rs s (83)

where L(s + %, ord, 7, Xv) is the ratio of L-factors and e-factors that appear
in the formula for Z,,,.

Proof. The integrals I, and I, are of the same form as the ‘Godement—Jacquet’
integral defined in [Jac79, Equation (1.1.3)]. Applying the ‘Godement—Jacquet
functional equation’ in [Jac79, Equation (1.3.7)], we obtain

L(s+31m, ®xw)

I = _ _
e(s+ 2 m, ®xouw) L (=5 + 3,7, ® x50)
Certw . - y
X / (@) (D)|det D|,, o Xa (DY (Bp,, 7, (D), )y, d°D,
GLy,, (Kw)

(84)

where (@V)" denotes the Fourier transform of @ .
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From its definition,

wro=a. (%5 5)) (85)

In particular, the support of (®)" is X =T}, I,,. Let D = y1y5, y1 € Ty,
and y, € I,,. Applying Equations (62) and (69) and the definition of ¢, we see
that

(Bbos Ty (DYPo, ), = T V7 VP T (V2) BV,
= W, 7 D10, (V) Pbs B ),

—1
= 120 (D)9, ((13” g)) (1, B1, ),

Plugging this into Equation (84) and applying Equation (85), we obtain

L(s+l’nbv®X2Aw) -
I, = 22 "hw ; - Vol(x®) . ’ .
e (S + %, Tp, @ Xz,w) L (—s + %, Ty, & Xﬂ)) ol(X™) - (¢, b, ),

The computation of I, is similar. The consequence for /,, then follows from
Corollary 4.3.8 and Equations (71) and (51). ]

REMARK 4.3.11. Let w,, denote the central quasicharacter of 7r,,. Then

( n 1 2 ) Wg, (—1)
el —s+ =, m,, w ] = — —.
2 X e(s+ 1 7 ®x 1)

So we may rewrite I, as

L= a)a,,,(_l)L (% + s, ﬁau, ® Xl_llv) . VOI(.’{(I))
A P SR R

and hence [, /0 as

L _ o, (=DL (3 + 5. 70, ® Xi)
DI (543 7a ® x10) L (=5 + 3. Tap @ X1.0)
L(s+ 3 7, ® xouw)

® Xz,w) L (—S + %, TTp, ® Xz_zL)

e(s+3,m

w

Therefore, the Euler factor at p, which is the product

1
HL<s + 3, ord, 7, Xw)

wlp
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of the factors defined in equation (83), can also be written

M @ay (DL (L 45, Ty ® X171)
e (s + 3. Fa, ® Xiw) L (=5 + 3. 7a, ® X1.0)
L(s+31m, ®xw)
X 1 1~ —-1y-
€ (s + 5.7, @ X2,w) L (_S + 27, ® X2~W)

w|p

(86)

Note the similarity of the form of the zeta integral at p in Equation (86) with
the form of the modified Euler factor at p for the p-adic L-functions predicted
by Coates in [Coa89, Section 2, Equation (18b)].

REMARK 4.3.12. The factor *J,, can be written as

_ Vol(I'g,,) - Vol(Tg )
Y Vol(Tgw NTr.w)

87)

for any r > 1. From this we conclude that

(Bus P,
VOI(FR’W N tFR,w) )

I,
Vol(I'g.,,) - Vol(Tg.)

1
L(s + X ord, 7, Xw)

The right-hand side (and hence the left-hand side) is easily seen to be
independent of r.

In order to explain the cancelation of various intermediate volume factors
appearing along the way to the final expression for the values of our p-adic
L-function in Theorem 9.2.2, we identify the volumes in this last expression (in
a special case) with volumes of groups defined elsewhere.

Suppose that n; ,, = 1 for all i. Then R, is just the Borel B, and Ik, = 18’,,
where 1)), is the w factor of the image of I, = I under the isomorphism (14).
Then Tz ,, = I, can be identified with the corresponding factor of I°_,,.

4.4. Holomorphic representations of enveloping algebras and anti-
holomorphic vectors.

4.4.1. Holomorphic and anti-holomorphic modules. Throughout this section,
we identify X' with X'+, and we identify each element o € X with the restriction
o |xc+. To simplify notation, we let G* = GU| = Rx;o GU* (V) where GU™ (V)
denotes the full unitary similitude group of V. Thus, G*(R) = H(fefm G,,
with G, = GU(V)x: ~ GU"(a,, b,). For any h : Rcr(G,c) — Gk as
in Section 2.1, the image of 4 is contained in the subgroup G of (g,, 0 € Xic+)
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for which the similitude factor v(g,) is independent of o, and it is to this latter
subgroup that the Shimura variety is attached.

Let U, = C(R) € G(R) and X be as in Section 2.7.1. We assume U, is
the centralizer of a standard h as in Section 2.3.2; let U, C G, denote its
intersection with G, and let K C U, denote its maximal compact subgroup;
K¢ is isomorphic to the product of compact unitary groups U (a,) x U (b,). We
have

£, .= Lie(U,) = 3, @ Lie(K))

where 3, is the R-split center of g, := Lie(GU" (a,, b,)). We let U(g,) denote
the enveloping algebra of g, .
For 0 € X+, we write the Harish—Chandra decomposition

go:éo@p;@p:'

Because i was chosen to be standard, this decomposition is naturally defined
over ¢ (K) C C. For any irreducible representation (z,, W, ) of U, of G, :=
G(KF), we let
D(t) =U(g,) Q) Wy (88)
U(t;®ps)
We have assumed that our chosen £ takes values in a rational torus 7 (=
Jon) C G (so that (T, h) is a CM Shimura datum), and let 7, C G, be the

o-component of 7' (R), t, its Lie algebra. We choose a positive root system R}
for T, so that the roots on p; are positive, and let b be the corresponding Borel

subalgebra.
Let RT“ C R! be the set of positive compact roots. The highest weight of
7, relative to R} can be denoted ky, = (o5 K16 = *++ = Koy oi Kf g = -0+ =

Ky o) € L X L% X Zbe, where c, is the character of 3,. We call (to, W)
strongly positive if there exists an irreducible representation W, of G,, with
highest weight @ = (—¢,;a; > -+ > a,) € Z x Z" relative to R}, such that,
setting a = a, and b = b,,

(ai,...,a,) = (—K;ﬁ —da,...,—K{,—0a;—Kqo+Db,...,—ki,+Db); (89)
in other words, if and only if —«{ , —a > —k, , +b. The contragredient of D(z,)
is denoted

D.(z,) =D(z,)" 2 U(g,) @) We. (90)
Ut ®pd)

It is the complex conjugate representation of ID(z,) with respect to the R-
structure on g, ; we call this the anti-holomorphic representation of type t,.
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In what follows, we usually write D(k,) instead of D(z,). It is well known
that if 7, is strongly positive then D(k,) (respectively D.(k,)) is the (U(g,),
U,)-module of a holomorphic (respectively anti-holomorphic) discrete series
representation of G, and moreover that

dim H*(g,, U,; D(k,) ® W,) = dim H*”(g,, Uy; D.(k,) @ W)) = 1

with W, the representation with highest weight given by (89), and W its dual,
with highest weight

(co; —Quy...,—a1) = (Cos K10 —b; ..., Kgo — D, Kf»a +a,... ,KZ’U +a). (91)
The minimal U, -type of D(k,) (respectively of D.(x,)) is the subspace

LW, CU(9) u,ap;) We,
(respectively 1 @ W,, C U(go) ®u e, eps) Wi, )-

The minimal U,-type of D(«x,) (respectively of D.(«,)) is also called the space
of holomorphic vectors (respectively anti-holomorphic vectors).

4.4.2.  Canonical automorphy factors and representations. The (U(g,), U,)
module D(x,) can be realized as a subrepresentation of the right regular
representation on C*°(G,) generated by a canonical automorphy factor. We
recall this construction below when G, = G4, ~ GU(n, n) and 7, is a scalar
representation.

Let M, be the affine group scheme of n x n-matrices over Spec(Z), M, =
Spec(P(n)). For o € X, let P(n), denote the base change of P(n) to O, =
0 (Ox). Corresponding to the factorization G*(R) = [[, G,, we write X =
[1,cs X». The maximal parabolic P,, together with U,, defines an unbounded
realization of a connected component X C X, as a tube domain in p; , [Har86,
(5.3.2)]. A choice of basis for L, together with the identification of V with V,
and V¢ introduced in Section 4.1.1, identifies pia with M, (C) and therefore
identifies X with a tube domain in M, (C). Let J, € X be the fixed point of
U, . Without loss of generality, we may assume J, to be a diagonal matrix with
values in o (K) whose entries have trace zero down to KC*. Then X/ is identified
with the standard tube domain

Xn,n = {Z € Mn((c) | Ja(tz - Z) > 0}

With respect to this identification, any g, = (“" b”) € G, acts by g,(2) = (a,z+

¢o do

b,)(c,z +d,)"". (Here a,, b, c,, and d, are n x n matrices.)
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Forz = (Za)ae): €eX= l_[gez; X, and 8 = (gU)GEE € ngeg G(R), let

J(80:20) =C; 20 +do J'(8.2) =[] 7(80:20)

oeX

J(80:20) = CoZo +dy  J(8,2) =[] /(20 20).

oeX

Let

Je, (20) = j (80, 25) = det J (g5, 25)
(= v(gy) " det(g,) det(J' (g5, 25)) = v(g,)" det(g,) " det(J (g5, 25))

Jo@=j(g 2 =[] G

oeX

Fixo € Y. For g € G, let
J(g) =J(g,1,): J'(g) =J'(g, 10).

These are C*°-functions on G, with values in GL(n, C), and any polynomial
function of J and J' is annihilated by p_ and is contained in a finite-dimensional
£, subrepresentation of C*°(G, ). Similarly, let

Jj(g) =det(J(g)); Jj'(g) =det(J'(g)),

viewed as C*°-functions on G, with values in C*.
Let x = || o || - xo be an algebraic Hecke character of X, where m € Z and

X0.0(2) = 77e) z=b(xo)

for any archimedean place o. Define D*(x,) = D?(m, xo,) to be the
holomorphic (Lie(G4,), U,)-module with highest U, -type

A(Xo) = A(m, X00) = (m = b(xe),m —b(Xo), ..., m — b(Xo);
—m + a(er)7 cee,—m+ a(Xa); .)

in the notation of [Har97, (3.3.2)]. Here e is the character of the R-split center of
U, (denoted c in [Har97]), which we omit to specify because it has no bearing
on the integral representation of the L-function. We define a map of (U (g, ), U, )-
modules

(X)) 1 D*(xs) = C¥(G,) 92)

as follows. Let v(x,) be the tautological generator of the A(m, xo.,)-isotypic
subspace (highest U, -type subspace) of D*(m, x.). Let

L)) = Ty, (§) 1= (@)U - (g) Uy (g) et e
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and extend this to a map of U (g, )-modules. Let C(G,, x,) denote the image of
t(Xo)-

REMARK 4.4.3. Note that J, depends only on the archimedean character x, =
e 115 X0.0-

We will only take m in the closed right half-plane bounded by the center of
symmetry of the functional equation of the Eisenstein series, as in [Har08].
For such m, the restriction of D?(m, xo,) t0 Us, = Ul(ay, by) X U(by,ay)
decomposes as an infinite direct sum of irreducible holomorphic discrete series
representations of the kind introduced in 4.4.1:

D*(m. x00) = P D) ®DK, @ x00) = P Diko) @Dk ® Xo)

KU€C3(vaO.J) K0€C3(XU)
93)
where C;3(x,) = C3(m, X0, ) is a countable set of highest weights:
C3(X(;) == {(_m +b(X(T) —FVays ooy —M +b(XJ) — I
m—a(xe) +s1,....,m—a(xs) +sp,)} 94)
where
N2z 21, 20082850228, 20, 95)

(Note the change of sign relative to A(x,)! This is due to the duality in the
definition (88). Compare [Har97, Lemma 3.3.7] when a(y,) = 0.) There is an
explicit formula for «” in (121), but the simplest explanation is probably that,
if we identify holomorphic representations of U (b, , a,) with anti-holomorphic
representations of U (a,, b, ), then

D)) — D,)"

as representations of U (a,, b,).
For each o € X, we define

(@(X6)s B(Xo)) = (=m +D(X5), .., —m + b(Xs);
m—a(xy),....,m—a(x,)) € Z% b

and let
(@(x), B(x)) = (@(Xo), B(Xo)oes- (96)

For k = (k,)gex, With k, € C3(x,), we define
Po =Ko — (@(Xo), B(Xe)) = (=Tays ooy =F15 815 -0 Sp);
v v v o7
Pg =iy e s Fays Sty oo S5,)s P = (Po)oezs P° = (0, )ses-

Downloaded from https://www.cambridge.org/core. IP address: 71.63.163.5, on 06 May 2020 at 09:22:42, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.4


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core

E. Eischen, M. Harris, J. Li and C. Skinner 74

The involution v on the parameters (r;,s;) corresponds to an algebraic
involution, also denoted v, of the torus 7.

The algebraic characters p, p¥, and « all determine one another and will be
used in the characterization of the Eisenstein measure in subsequent sections.

Note that the twist by o, coincides with the twist by x, because the norm of
the determinant is trivial on U (b, , a,). We prefer to write the twist by y,, which
is more appropriate for parametrizing automorphic representations of unitary
similitude groups.

LEMMA 4.4.4. For such x, the map ((x,) of (92) is injective for all o. In

particular, the image C(G,, X,) of t(xo) is a free U(p}) = S(pF)-module
of rank 1.

Proof. Indeed, D?*(x,) is always a free rank one U (p)-module, and for m in
the indicated range is irreducible as U (g, )-module. Since ¢(x,) is not the zero
homomorphism, it is therefore injective. O

DEFINITION 4.4.5. Let k = (k,, 0 € X), where for each o, «, is the highest
weight of an irreducible representation t, of U,. Let (x,,0 € X) be the
archimedean parameter of an algebraic Hecke character y of K. The pair (,
x) (or the triple (k, m, xo)) is critical if k, € C3(x,) forallo € X.

If 7 is an anti-holomorphic automorphic representation of G, of type x, we
say (m, x) is critical if (k, x) is critical.

REMARK 4.4.6. When [ is imaginary quadratic, the discussion in [Har97,
Section 3] shows that, for fixed & and y, the set of m such that (7, m, xo) is
critical is exactly the set of critical values of L (s + %, 7, x) greater than or equal
to the center of symmetry of the functional equation. The same considerations
show that this is true for an arbitrary CM field. The verification is simple but
superfluous unless one wants to compare the results of the present paper to
conjectures on critical values of L-functions.

Let v, ® v, denote a highest weight vector in the minimal K;-type of
D(k,) ® D(x) ® xo), relative to a choice of compact maximal tori in Us, as
in 4.4.1. The holomorphic module D?(, ) is a free rank one module over U (p}),
generated by v(x,) € A(x,). There is therefore a unique element 6, ., € U (9]
such that
(98)

The differential operator J,, ., depends on the choice of basis vectors but is
otherwise well defined up to scalar multiples. The module D(x,) ® ID)(K(E X Xo)

8)((,,1(0 ' U(XG) = Vg, Q.-

Ko ®Xo
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has a natural rational structure over the field of definition E(z,, x,) of 7, X 7. ®
Xo- Let span(v,, ® vK;®Xn) denote the E(t,, x,)-line in D(k,) @ D(k) ® x,)
spanned by the indicated vector. We always choose v, ® v, to be rational

over E(t,, Xo)-

4.4.7.  Holomorphic projection. We letpr, , : D*(x,) — D(k,) @D(k> ® xo)
denote the natural projection and

pr‘;"}I = prﬂf’(‘;“mbv ‘D*(x,) — span(ve, ® v, )
denote pr, , followed by orthogonal projection on the highest weight component
of the holomorphic subspace. Let

D*(xo)" " = €D im(pr)%)

kg €C3(m, X )

and let
' = P et D) = D7 ()"

Because we have chosen & standard, the enveloping algebra U(g,) and its
subalgebra U (pjﬂ) ~§ (pjﬂ) have models over O,. We define an isomorphism
of O, algebras

Spi,) — P(n), 99)

using the identification of Section 4.4.2.

Let n = a, + b, be a signature at 0. We write X € M, in the form
X = (2% px) with A(X) € M,, (an a, x a,) block, D(X) € M,_, and
B(X) and C(X) rectangular matrices. With respect to this decomposition and
the isomorphism (99) we obtain a natural map

Jj (@5, by) : P(ay)s ® Pby)s = P(n), —> U(py,).

Fori =1,...,a, (respectively j = 1, ..., b,) let A;(X) (respectively A/I.(X))
be the element of P(a,), (respectively P(b,),) given by the ith minor of A
(respectively the jth minor of D) starting from the upper left corner. Let r; , >

2 Ve 2 Tagtio = 0,816 2 -0 2 Sp,0 2 Sh+1.0 = 0 be descending
sequences of integers as in Inequalities (95). Let

ri,o :ri.(r_ri+1,a’l = 17"'7a0';sj,(7' :Sj,a _Sj+],6?.] = ly---ab(r-

and define p(¥_,s ) € P(n), by
ag by
p(,.5,)(X) = j(ac, by) (]’[ A" ] A_’,-(X)f‘fﬂ). (100)
i=1 j=1
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Let 8(7,,5,) € U(p}) be the differential operator corresponding to p(7,, s, )
under the isomorphism (99).

The group GL(a,) x GL(a,) (respectively GL(b,) x GL(b,)) acts on P(a, ),
(respectively P(b,),) by the map (g1, g)(X) = ’gle g», and the action
preserves the grading by degree. With respect to the standard upper-triangular
Borel subgroups, we can index representations of GL(a, ) (respectively GL(b,))
by their highest weights, which are a,-tuples of integers r; > r, =2 --- = r,,
(respectively b,-tuples s; > s, = --- = 55, ). The following is a statement of
classical Schur—Weyl duality:

LEMMA 4.4.8. Let u = a, or b,. As a representation of GL(u) x GL(u), the
degree d-subspace P(u)ﬁi C P(u), decomposes as the direct sum

Pwi: — PIF & F"]
n

where @ runs over r-tuples ¢, > ¢ > -+ > ¢, = 0 such that ), ¢; = d.
Moreover, if w = ¢y 2 ¢ =2 -+ 2 ¢, =2 cyp1 = 0, the highest weight space
Fit C [F-Y @ F*] is spanned by the polynomial A* = [];_, A7 .

Proof. This is the case n = k = r of [GW09, Theorem 5.6.7]. O

Define the (one-dimensional) highest weight space F** as in the statement
of the lemma, and write

Pw; =P F-r.

12

Recall the notation of (97).

COROLLARY 4.4.9. Let (x, x) be critical. For each o € X, there is a unique
ay + b, -tuple

pg:(rl,(r}"'}ra ,J>O;sl,a>"'>sb ,020)
as above such that

P By 5)  V(0)) = Prpo e @ Vs,

with P, , » a nonzero scalar in E(t,, X,)>.
We write

D(p,) = D(ko, Xo) = 8(7,,5,), D(p") = D(k, x) = l_[D(KU’ Xo)
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and

D™ (p)) = D™ (s, Xo) = P15 8(F,, 5,),
D™ (p*) = D"'(k, x) = [ [ D" (ko xo)

(el

for these choices of (r; 3 sj.). Then for all k" < k there exist unique elements
8(k, k") € U(pT), defined over algebraic number fields, such that

Dk, x) = ) 8(c, ") o D"'(c", x);

k<
8(k, k) is the scalar [ [ Py, ;.0

Proof. Consider j(a,,b,)(P(a,)t ® P(b,)}) C P(n),. This is the space
spanned by the p(7,, 5 ) defined in (100). Let §(a,, by)™ C U(p}) be the
subspace identified with j (a,, b,)(P(a,)} & P(b,)}) by the isomorphism (99).
The decomposition (93) is based on the fact that the composition

rhol )
8(ag, b0)+ ® U(X(r) — Dz(XU) p_) ]D)z(xa)h(’]’aﬂ*ba

is an isomorphism. See the discussion in [Har86, Section 7.11].

This does not say that (v, § ) ® v(x,) lies in the highest weight space of the
holomorphic subspace of the direct factor D(k,) ® D(K ® Xo) corresponding to
the a, +b,-tuple (7, §,); but it does say that its projection on that highest weight
space is nontrivial. This is equivalent to the first statement of the corollary. The
remaining statements are formal consequences of the decomposition (93) and the
fact that the decomposition is rational over an appropriate reflex field, cf. [Har86,
Lemma 7.3.2]. ]

4.4.10. Differential operators on C*°-modular forms. Let x = | o ||" xo be an
algebraic Hecke character of /C, as before. We view G, as the rational similitude
group of a maximally isotropic hermitian space V; this allows us to write Sh(V})
for the corresponding Shimura variety. Let A(x) = (A(x,), 0 € X) be the
character of U,, whose restriction to U, is A(x,). Let L()) be the 1-dimensional
space on which Uy, acts by A(); it can be realized over a number field £ (xo)
which depends only on .. The dual of the highest Uy-type A(x), restricted
to the intersection of U, with G4(R), defines an automorphic line bundle
L(x) on Sh(V,) with fiber at the fixed point & of U,, isomorphic to L(y). If
T = 7o ® 7 is an automorphic representation of G4, with 77, a (Lie(G4), Us)
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module isomorphic to D*(x) = ), . (D*(x,)) and 7, an irreducible smooth
representation of the finite adeles of G4, then there is a canonical embedding

wp —> 7@ H' Py, Ui D’ () ® L(x)) < HO(Sh(Va)", L)) (101)

Write £2 = §2gpv,) for the cotangent bundle. For any integer d > 0, and for any
ring O, let P(n)?(O) denote the O-module of O-valued polynomials of degree
d on the matrix space M, and let P(n)?*(O) = Homp(P(n)?, O) denote the
dual @-module. There is a canonical action of U,, on P (n)¢, for every d, defined
over the field of definition E (/) of the standard CM point £ stabilized by U,,, and
even over its integer ring. The Maass operator of degree d, as defined in [Har86,
Section 7.9] is a C*°-differential operator

89 : L(x) > L(x) ® Sym’ £2. (102)

We can view the target of 8? as the automorphic vector bundle attached to the
representation L(x) ® P(n)** of Uy, using the identification of Section 4.4.2
as in (99). We use the same notation to denote the action on the space A(G,) of
(not necessarily cuspidal) L(x),-valued automorphic forms on G4:

8y + A(Ga, LOOW — A(Ga, LK @ P(m)™) (103)

where the notation denotes automorphic forms with values in the indicated vector
space. For any polynomial ¢ € P(n)¢ = Sym* ps we thus obtain a differential
operator

89(¢) : A(Ga. LGOR) = AGH(@N\G4(A), LOOW: 85@)(f) = [85(f) @ ¢]
(104)
where the bracket denotes contraction P(n)?* ® P(n)¢ — E(h).
Finally, for each o define sequences 7, and 5, as in Section 4.4.7; let 7
(¥,),5 = (5,). Suppose Y _ [ , Fio + Zj §; -] = d. Then we define p(7, 5) =
[1, p,,s,) where the factors are as in (100), and let

84(7,5) = 82 (p(7, §)) : HOSh(V)™, LOO™™ — AG LOON. (105

Under the isomorphisms (101), 8? (7, 5) is identified with the operator on the

left-hand side deduced from multiplying by the element p(7, 5), viewed as an
element of Sym? p;, which maps H°(B,, Us; D*(x) ® L)1) = &, Cv,, ®
L(x)nto p(7,5) ® ®Cvy, @ L(x)n € D*(x) ® L(i-

The holomorphic differential operators of Corollary 4.4.9 define operators on
automorphic forms, as follows. Let $2%, (K, C) denote the space of C* modular
forms of type « on Sh(V)), of level K, and define Sf(’?ﬁv(Kz, C) analogously.
The following Proposition restates [Har86, Proposition 7.11.11]:
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PROPOSITION 4.4.11. Let (k, x) be critical as in Corollary 4.4.9. Fix a level
subgroup K, C G4(Ay) and a subgroup K; x K, C G3(Ay) N Ky. There are
differential operators

D(K, X) . HO(K4Sh(V4)t0r, ﬁ(X)Can)
- S(K,L,CO)® ST _(Ky, C) ® x odet;

<,

DhOl(K7 X) . HO(K4Sh(V4)t0r7 E(X)Can)
- SK,V(K11 (C) ® SK”,—V(KZ, (C) ® X © det

which give the operators 5;‘5 (7, 5) and pr™' o 8;‘5 (7, §) upon pullback to functions
on G4(A) and restriction to G3(A).

4.4.12. The Hodge polygon. If m is a cuspidal automorphic representation
of GU(V) whose component at ¢ is an anti-holomorphic discrete series
representation of the form D.(z,), then its base change IT to an automorphic
representation of GL(n)x (ignoring the split center) is cuspidal, cohomological,
and satisfies ITY —> I1°, and therefore the associated ¢-adic Galois
representations have associated motives (in most cases), realized in the
cohomology of Shimura varieties attached to unitary groups, with specified
Hodge structures. In what follows, we fix o and attach a Hodge structure to the
anti-holomorphic representation D.(t), according to the rule used to assign a
motive to I1. The Hodge structure is pure of weight n — 1 and has the following
Hodge types, each with multiplicity one:

kKi—b+n—1,b—x«y),...,(ksy,n — 1 —k,),
m—1—a—x«;,k+a),...,(—«i, ki +n—1),
(ki +n—1,—«{),..., (k5 +a,n—1—a—«;),
n—1—k,,k),...,(b—Kki, k1 —b+n—1).

(106)

Label the pairs in (106) (p;,q;), i = 1,...,2n, in order of appearance; thus,
(pi, g;) is in the top row if and only if i < n.

HYPOTHESIS 4.4.13 (Critical interval hypothesis). We assume that the weights
(x, k¢) are adapted to the signature (a, b) in the sense that, for every pair (p;, ¢;)
in the collection (100), p; # ¢; and p; > g; if and only if i < n.

One checks that Hypothesis 4.4.13 holds if and only if 2k, > n—1 and —2«{ >
n — 1. We define the Hodge polygon Hodge(k, k) = Hodge(ID.(t)), to be the
polygon in the right half-plane connecting the vertices (i, p;) with (p;, g;) the
pairs in (106).
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4.4.14. Specific anti-holomorphic vectors. When 1, is strongly positive with
highest weight k = k,, we write D(x) = D(z,), D.(k) = D.(z,) when it is clear
that « is a weight and 7, is an irreducible representation. Let = be a cuspidal
automorphic representation of G with 7, = D.(x) as above. In the computation
of the zeta integral, we use a factorizable automorphic form ¢ = Q) ¢, € 7,
with ¢, a vector in the minimal U, -type 1® W’ of D, (). In practice, we choose
¢, to be either the highest weight vector ¢, ;. or the lowest weight vector ¢, _ in
1® W, If wy is the longest element of the Weyl group of 7, relative to R}, then
¢+ (respectively ¢, ) is an eigenvector for T, of weight —w, (k) (respectively
of weight —«).

4.5. Local zeta integrals at archimedean places.

4.5.1. Choices of local data. This material has been covered at length
in [Har97, Har08], so we can afford to be brief. Notation for induced
representations is as in Section 4.1.2 above. The notation for holomorphic
representations is as in Section 4.4.2. An easy computation, similar to that
in [Har97], yields

LEMMA 4.5.2. As subspaces of C®(G,), t(m, x,)(D*(m, x,)) C I,(m — 5 X)-

REMARK 4.5.3. Note that we have omitted similitude factors here. Strictly
speaking, these should be included; but they do not change the theory in any
significant way.

4.5.4. Nonvanishing of I. Let o be an archimedean place, f, = f,(x,,¢) €
I (xu.o, m) the local section at 0. We assume f, is of the form

fU(XUa C, g) = B(XO'? KO')D(KO" m, Xu,o’)-]m.)(u_g (g), 8 € G4,a (107)

where J,,,., € C*(G4) is the canonical automorphy factor introduced in
Section 4.4.2 and B(x,, k,) is a nonzero algebraic scalar. Let ¢, ® go(”, be an
anti-holomorphic vector in the highest weight subspace of the minimal K, -type
of 7, ® 7).

PROPOSITION 4.5.5. The local factor 1,(¢,, ¢’ f», m) is not equal to 0.

Proof. If D(k,, x,) is replaced by D™ (k,, x,) in (107), this follows
from [Har08, Remark (4.4)(iv)]. Since ¢, ® (pg is an anti-holomorphic vector,
the pairing of (the Eisenstein section) D (ky, Xo)Jim.x, .o With (the highest weight
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vector) ¢, ® ¢” factors through the projection of D(k,, Xo ) Jn.y,.c ONt0 D™ (i,
Xo)Jm,x,.0- The Proposition is thus a consequence of Corollary 4.4.9. O

When the extreme K-type t, = 7,,, ® T5,, il 7T, iS one-dimensional, the
archimedean zeta integrals have been computed in [Shi97, Shi00]. Garrett has
shown in [Gar08] that the archimedean zeta integrals are algebraic up to a
predictable power of the transcendental number 7, which can be normalized
away. The zeta integrals at ¢ depend only upon the local data at 0. When
at least one of the two factors (v, ,, 75, ,) Of the extreme K-type is one-
dimensional, the archimedean zeta integrals are given precisely on [Gar(8, page
12]; and furthermore, Garrett showed in [Gar08] that when both factors are
scalars, the archimedean zeta integrals are nonzero algebraic numbers. They
have not been computed in the more general case (that is when neither 7, , nor
75, o 18 one-dimensional). However, the analogous computation for the doubling
method for symplectic groups has been carried out in complete generality by Liu
in [Liul9a]; the result matches the factor predicted by Coates and Perrin-Riou
in [CPR89]. One of us (E.E.) plans with Liu to adapt her method to the current
situation.

In the meantime, we will be satisfied with the following result, due to
Garrett [Gar08].

PROPOSITION 4.5.6. Let 1,(x,, k) be the local zeta integral

Ly (Xo» ko) = 1o (@0, @0y frsm),

where ¢, = ¢, _, ¢ = P _ and f, is given by (107). Then 1,(x,, k,) is a
nonzero algebraic number.

REMARK 4.5.7. When «, is a scalar representation, Shimura obtains an explicit
formula for the local zeta integral. In general, as explained at the end of [Har08,
Section 5], Garrett’s calculation actually determines the value of the integral up
to an element of a specific complex embedding of the CM field F'. In that paper F'
is imaginary quadratic, but the same reasoning applies in general. Undoubtedly
the calculation actually gives a rational number, but the method is based on the
choice of rational structures on U,, and the aforementioned differential operators.
We do not need to use this more precise information here.

4.6. The global formula. We have now computed all the local factors of
the Euler product (51). The Proposition below summarizes the result of our
computation. Bear in mind that, although we write ¢ € 7, we actually mean
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that ¢ € m, where the latter is the irreducible U;(A) constituent of 7 chosen as
in (47).

First, write x = || o || - x, with yx, a unitary Hecke character of /C. Denote
by x T the restriction of y, to the ideles of ICT; it is a character of finite order.
Let n = nx/xc+ denote the quadratic idele class character of K attached to the
quadratic extension /C//C*. For any finite place v of ICt, define the Euler factor

n—1

DGO =[]Lo@m+n—rx*" ).
r=0

(In the notation of Equation (53), we have D,(x) = d,,(m, x,).) For any finite
set S of finite places, let

D) =[]DP.x): D(x)=D"(x). (108)
vgS

where the product is taken over finite places.

THEOREM 4.6.1. Let the test vectors ¢ € m and ¢° € w” be chosen to be
factorizable vectors as in (48), with the local components at p and oo given
as in (49) and (50), respectively. Assume the local components at finite places
outside S = S, are unramified vectors, and the local choices at ramified places
are as in 4.2.2. Moreover, assume the Siegel-Weil section f; € I(x, s) is chosen

as in the preceding sections. Write x = || o || x,. Then we have the equality
D) - 1(p. ¢’ f.8) = (@, ") - (X, 1) Lo (0 OIS (s + 5, 7, X))
where

Is = [ [ Du(x) - volume(@,),

ves

Lo 6) = [ [ 1 (X )

is the product of factors described in Proposition 4.5.6,

1, =L,(s,ord, 7r, ) x H[Q]w APus )]s

where °0,, is the factor that appears in (83), and we define

Ly(s,ord, 7, x) := [ ] L(s, ord, 7, xu)-

wlp

Finally, (e, ®) is the L? inner product on cusp forms.
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REMARK 4.6.2. In light of (87) and the identification of volumes in
Remark 4.3.12, the expression for I, can be rewritten as

[T, (bu. Gu)x,
Vol(I), NIP_,)

1

p

Vol (12, )Vol(1°_,)

= L,(s,ord, 7, x)

Part III: Ordinary families and
p-adic L-functions

5. Measures and restrictions

This section focuses on measures and restrictions. In particular, Section 5.3
gives a measure whose values at certain specified characters are the Eisenstein
series associated to the local data chosen when we calculated the zeta integrals
above.

5.1. Measures: generalities. Let X be a compact and totally disconnected
topological space. For a p-adic ring R we let C(X, R) be the R-module of
continuous maps from X to R (continuous with respect of the p-adic topology on
R). Note that C(X, Z,,) ®Zp R —> C(X,R).Let M be a p-adically complete
R-module. Then by an M-valued measure on X we mean an element of the R-
module

Meas(X, M) = Homg, (C(X, Z,), M) = Homg(C(X, R), M).

Suppose X is a profinite abelian group. Then Meas(X, R) is identified with
the completed group ring R[[X]. In particular, Meas(X, R) is itself a ring. The
following lemma is immediate:

LEMMA 5.1.1. Suppose X = X| x X, is a product of profinite abelian groups.
Then there is a natural isomorphism

Meas(X; x X», R) —> Meas(X;, Meas(X», R)).

If we write X = 1<iLniX/X,<, where X = Xy D X; D X, D --- is a
neighborhood basis of the identity consisting of open subgroups of X of finite
index, then

AX,R = R[X] = @R[X/Xi]-
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This is a compact topological ring. The following dictionary is well known and
due to Mazur:

FACT 5.1.2. The identification of a measure . on X with an element f of Ax g
has the property that, for any continuous homomorphism x : X — R}, with R,
a p-adic R-algebra,

/ xdp = u(x) = x(f)
X

where x(f) is the image of f under the homomorphism Ax r — R, induced
by x.

We let x denote the homomorphism Ay p — R of Fact 5.1.2; in this way x
defines an R-valued point of Ay .

In what follows, characters of X; will be Hecke characters, X, will be the
group of integral points of a p-adic torus, whose characters parametrize weights
of p-adic modular forms, and M will be the ring of p-adic modular forms.
When X, is a point, the measure on X = X, will be an Eisenstein measure
that pairs with modular forms of fixed weight, and in particular can be used to
construct what we will call, loosely and somewhat abusively, a p-adic L-function
of one variable, the variable Hecke character, attached to a fixed holomorphic
automorphic representation. When X, is the group of points of a nontrivial torus,
we will be constructing p-adic L-function of two variables, the second variable
running through the points of a Hida family.

The following is a version of a well-known lemma (see [Kat78, Proposition
4.1.2] for the formulation below):

LEMMA 5.1.3. Suppose X = 1<i£1m X, is a profinite abelian group. Suppose R

is a ring that is flat over Z, and that contains a primitive nth root of unity
for each n dividing the order of X,, for some m. Each R-valued measure
on X is completely determined by its values on locally constant continuous
homomorphisms x : X — R, and any function « from the continuous characters
to R determines an R-valued measure on X whenever the values of o on the
space of R-valued locally constant characters on X satisfy the usual Kummer
congruences (as in [Kat78, Section 4.0]).

5.2. Thespace X,. For each integer r > 0, let

U =0RZ) x 1+ pO®ZL,) C(K®L*
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and R
X, :l(inlC \(K®Z)*/U,.
This is the projective limit of the ray class groups of I of conductor (p"). In
particular, it is a profinite abelian group. More generally, if N, is prime to p, we
let
Xp,No = @KX\(K ® Z)X/Ur,No

r

where Uy, = (1 + NoO @ Z2)* x (1 + pO ® Z,) C U,.

5.2.1. Admissible measures on X,. We suppose now that we are in the
situation of Section 3, and we freely use the notation and conventions introduced
therein. Using the isomorphism (36) we identify H,(Z,) with H,(Z,) via h; =
(h1,w)wip F> ho = (haw)wp With Ay, = hy 3. This then identifies Ty, (Z,) with
Ty, (Z,) and Ty, (Z),) = Ty, (Z),) = Ty, (Z),) x Ty, (Z,) with Ty, (Z,) X Ty, (Z}).
In particular, the characters ¥ of Ty, (Z,) are identified with pairs of characters
(W1, ¥2) of T = Ty, (Z,).
Let:

e Kk = (k,) be an (O'-character of T as in Section 2.9.1 and let «’ be the O'-
character of Ty, (Z,) identified with the pair (x, k");

e 1 be a finite-order @; -valued character of T (Z,);
e K/ C G;(A}),i = 1,2, be open compact subgroups such that v(K;) = v(K>);
e R be a p-adic O'[y/]-algebra.

For any finite-order @: -valued character x of X, let y,' = ¢~'- x odet, where
by det we mean the map det : H,(Z,) - (O®Z,)" = ]_[wlp O that is the
composition of the isomorphism (36) with the products of the determinants of
each of the GL-factors, and let ¥, be the character of Ty, (Z,) identified with
the pair (y, ¥ "). By an admissible R-measure on X, of weight «, character v,
and level K3 = (K| x K37) N G3(A%), we mean a measure pu(-) = u(k, ¥, )

€ Meas(X ; Vo4(KY, R)) such that for any finite-order @; -valued character x
of X,,
w0 = i, ¥, x) € VIUKE, ¥, RIXD.
Let R’ be any p-adic R-algebra and ¢ an R-linear functional ¢ : VI4(K7Y,
R) — R’. Then
Me() = pelie, ¥, +) i= Lo plk, ¥, -)

is an R’-valued measure on X .
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We will need a slight generalization of the above definition. Let p, ¥, K/, R,
¥ ', and ¢/ be as above. Let:

e p = (p,) be an O'-character of T = Ty, as in Section 2.9.1 and let p* be the
O'-character of Ty,(Z,) identified with the pair (p, p);

e 1 be a finite-order @; -valued character of T (Z,);
e K/'C G,-(Afc),i =1, 2, be open compact subgroups such that v(K;) = v(K>);

e R be a p-adic O'[y/]-algebra.

Note that p* and (p, p") coincide as characters of Ty, (Z »), where o’ is defined
by analogy with (121). For any finite-order @: -valued character x of X, let
¥, ' = ¢! xodet, where by det we mean the map det : H,(Z,) - (O®Z,)* =
]_[w‘ » Oy that is the composition of the isomorphism (36) with the products of the
determinants of each of the GL-factors, and let WXA be the character of Ty, (Z,)
identified with the pair (v, v ). Let (a, B) be a character of Ty, (Z.,,), written
as a pair of characters of Ty,(Z,) = Ty,(Z,). By an admissible R-measure on
X, of weight p, character v, shift (o, 8), and level K_f , WE mean a measure
n() = w(p, ¥, ) € Meas(X; yod  (KZ, R)) such that for any finite-order

p2-(a,B)
—X
Q ,-valued character x of X ,,

/ xdw:=pu(x) = pno, ¥, x) € Vi, 5 (KY, ¥, RIXD. (109)
XI’

5.2.2.  Admissible measures on X, x Ty: two variables. In this section we fix
H = H, and consider admissible measures of weight p and shift («, §) where p
and (o, B) are allowed to vary. This requires a slight adjustment to the notation
of the previous section. More precisely, suppose we are given a homomorphism
sh : Ty, (Z,) — X, as before. By duality this gives a map sh* : C(X,,
R) — C(Ty(Z,), R) for any ring R; sh* takes characters to characters.

We also suppose we are given an algebraic automorphism v : Ty — Ty. If
p is a function on Ty, we let p¥ (1) = p(v(1)).

We fix a tame level N, as in Section 5.2 and define X, = X, y, as before. By
an admissible R-measure on X, x Ty of character v, shift s&, twist v, and level
K? = Kj = (K| x K7) N G3(A%), we mean a measure

() = w(y, sh, -) € Meas(X,, Meas(Ty, V"“(K?, R)))

such that for any finite-order @: -valued character x of X, and any character p
of TH .

1nOO(PY) = (@, sh, x)(p°) € Vol i (K, ¥y, RIXD).
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5.3. Eisenstein measures on X, x 7. Now, we recall the Eisenstein
measures on X, x T'. We briefly summarize their basic properties, as developed
in [Eisl5, Eisl4, EFMV18]—with special attention to the fact that they
p-adically interpolate values of the Eisenstein series associated to the local
data chosen above for the zeta integral calculations. As in Section 2.3, let
Y ={o e X : p, € X,}. This is a CM type for K. Throughout this section,
we take x : L*\Ag — C* to be a unitary Hecke character.

5.3.1. Axiomatics of the Eisenstein measure. The Eisenstein measures
of [Eis15, Eis14, Eis16], as well as the local components of ordinary vectors in
Hida families, have been reverse-engineered in order to meet the requirements
of the construction of the p-adic L-functions. In this section we first present
the axioms the Eisenstein measure is required to satisfy, and then explain how
they are satisfied by the ones constructed in the references just cited. We write
Ty = Ty, in this section.

The Eisenstein measure is, in the first place, a p-adic measure on the space
X, x Ty(Z,) with values in the space of p-adic modular forms on Gj. It is
characterized by its specializations at classical points. Let Yy be the formal
scheme over Z, whose points with values in a complete Z,-algebra R are given
by Hom(X , x Ty (Z,), R*). Let Y;}]g C Yy (C,) be the set of pairs (), ¢), where
x : X, = R*, for some R C C,, is the p-adic character associated to an
algebraic Hecke character, denoted x ', and ¢ = vp" is a locally algebraic
character of Ty (Z,): p is an algebraic character, v is an involution of Ty, as in
(97) and ¥ is a character of finite order. In other words, ¢ € C,(Ty(Z,), R) for
some r > 0, in the notation of Lemma 7.4.2.

Note that we are not requiring x** to be unitary here; rather, the variable
‘s’ is included in the infinity type of x; we fix an integer u such that, for each
o € ¥ wehave x, = || e |“ 0.5, Where o, = (z,“%=)7 ). This factorization
is not unique; however, recall the set C5(it, x,) of (93). We assume we are given
a subset Y5 C Y, ;}lg, determined by the following positivity condition:

(X,¢) €Y & i, € Cy(p, 7,°%77%)) Vo € X. (110)

This condition is independent of the choice of m as above, in other words is
independent of the choice of factorization.

Now we return to the notation of Section 4.6: write x = || e || - x,, and define
the finite-order idele class character xt of K. We omit the expression of
and y, in terms of m and yx,, and vice versa. Define the normalizing factors
D5(x) and D(x) asin (108). Let U, , = ]_[we):p ]_[:le U, . With notation as in
(23); here and below, the index i of (23) is superfluous because G is the unitary
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similitude group of a single hermitian space. Let

e, zli_r)nU:Xi (111)
N

(as an operator). We call this the ordinary projector.

DEFINITION 5.3.2. Let K be an open compact subgroup of G;(A%), i = 3,4,
with K{ C K N G3(A%). Let S be the set of primes at which K and K7 do
not contain a hyperspecial maximal compact subgroup. An axiomatic Eisenstein
measure on X, x Ty(Z,) of level S, relative to the set Y,C,""SS, of level K f and
with coefficients in R, is a measure dEis with values in V (K, R) such that, for
every pair (x = || o "+ xu, ¢ = ¥pV) € Y5, there is a factorizable Siegel-Weil
section

F0=Q) filwo) € Q) L m)

v

and such that:

e If v is a finite place outside S—so in particular y, is unramified for all
X € Y,C}“S—then Jfo(Xv, ) is the unramified vector in 7, (), ., m) with f, (X,
o) =1

e If v € Sthen f,(x,, ¢) is independent of the pair (y, ¢).

e For any prime w dividing p and for any real prime o € X, the local section
fo(Xo, ) depends only on x** and «,, (and on the choice of signature), and
is of the form

fa(X(n c, g) = B(Xa’ KO‘)D(KU7 m, Xu,a)Jm,x“ﬁ (g)9 8 € G4,o

where J,, ,,, € C*(Gy) is the canonical automorphy factor introduced in

Section 4.4.2 and B(x,, k) € @X. In particular, f,(x,, ¢, g) does not depend
on the factorization of yx,. (This follows from Remark 4.4.3.)

e For any prime w dividing p, the local section f,,(x,, c) depends only on yx,,
and ¥, (and on the choice of signature).

e, o / (X, ¢)dEis = D%(x) - e, ores; Ef(y.0)
XpxTh(Zp)

forall (x, ¢) € Y5, where D3(x) is the normalizing factor defined in (108),
res; is as in (45), and e, is the ordinary projector of (111).
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The measure dEis is said to be normalized at S if instead of the last relation
one has fX,,xTH(Z,,)(X’ c)dEis = D(x) - res; Ep(y.) for all (x,c) € Y. The
measure is said to have shift («, ) if it satisfies (109).

One obtains a measure normalized at S from an unnormalized measure by
multiplying by the appropriate product of local Euler factors at S. We write
D’(x) for ? = S or empty if we have not specified whether or not dEis is taken
to be normalized.

Definition 5.3.2 makes no mention of whether or not the measure dEis
contains a shift. The Eisenstein measure whose construction is recalled in
Section 8.2 comes with a shift that will be specified in Corollary 8.2.4.

In previous sections, we have chosen f()x,c) meeting the conditions of
Definition 5.3.2 in Sections 4.2.1 (local choices for v ¢ §), 4.2.2 (local choices
for v € §), 4.5 (local choices for archimedean places), and 4.3 (local choices for
v | p). Note that the choices at p and oo depend on the signature of the unitary
group G;. The existence of the Eisenstein measure itself that corresponds to
these choices is proved in [Eis15, Eis12]; see Theorem 8.2.2 below.

In the applications, the integrals of elements of Y5** against dEis suffice to
determine dEis completely. We write

thIO(X7 C) == ® Jm,xlw & ®u)[oofv(Xv, C);

holo OEZF_ 112
E (m) = tho]n(xu_'c)(m). ( )

Xu»C
Then the last condition of Definition 5.3.2 can be rewritten

e 0 / (x. ) dEis = D*(x) - ¢, o res; Dk m, x,) E(m),
X)X T (L) (113)

Y(ix =l ol" " xusc) € Y™,

where D(«, m, x,) is as defined in Corollary 4.4.9.

6. Serre duality, complex conjugation, and anti-holomorphic forms

6.1. The Shimura variety Sh(V). Let P = (K,c,O,L,{-,-),h) be a
PEL datum of unitary type associated with a hermitian pair (V, (-, -),) as in
Sections 2.1, 2.2, and 2.3, together with all the associated objects, choices, and
conventions from Section 2. However, since the number of factors m equals 1,
the indexing subscript ‘i’ will disappear from our notation. Let G = G p be the
group scheme over Z associated with P and let X = X be the G(R) conjugacy
class of h. Let Z; be the center of G. In this section we take [1 = @, so the
moduli problems are all considered over the reflex field F.
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Given K C G(A;) = GU(V)(A,) (notation as in Section 1.4), we now write
xSh(V) for the Shimura variety associated with the Shimura datum (G, X). (If
asb, = 0 for all o € X, then, properly speaking, the datum (G, X) does not
satisfy the axioms of a Shimura variety as set out in [Del79]. Nevertheless, in
this case, as the datum arises from a PEL datum P, the notion of the associated
‘Shimura variety’ still makes sense, following the conventions in [Lan12].) So
xSh(V) is just the F-scheme Mg ;. We set

Sh(V) = LiKLnKSh(V) = Li;—nMK*L'

The dimension of each xSh(V) is just the C-dimension of X, which is

d= Z a,b, .

GEZ}C

At times we will be comparing constructions for both Sh(V') and the Shimura
variety Sh(—V) for the pair (V, —(, -},,) (and the PEL datum P° = (K, ¢, O,
L, —(-, ), h), where h°(z) = h(z)). When it is important to distinguish which
hermitian space an object is associated with, we will generally add a subscript
‘V’ (for the pair (V, (-, -),)) or ‘=V’ (for the pair (V, —(-, ), if the notation
does not already distinguish the space (such as is done by Sh(V) and Sh(—V)).
We will also be using the notation G; = GU(V), G, = GU(—V) as in 3.1.

6.1.1.  Automorphic vector bundles. Recall that automorphic vector bundles on
Sh(V) = Sh(G, X) are defined by a ®-functor

G —Bun(X) —> Bun(Sh(V)),

where X is the compact dual of X, so a flag variety for G, and G — Bun is the
®-category of G-equivariant vector bundles. The base point &7 € X determines
a point P, € X this is just the stabilizer of the Hodge filtration on L @ R
determined by A. There is then a fiber functor G — Bun(}A( ) — Repc(Py) =
Repq(P,), where the last equivalence comes from the fixed identifications
in 2.6.1. Given an irreducible representation W of P, that factors through the
Levi quotient Hy of Py, we let wy be the corresponding automorphic vector
bundle. Each such bundle has a canonical model over a number field F(W)/F
contained in K'. For W = W, as in 2.6.3 (here and in the following we write
W, for W, (C)), the vector bundle w, defined in 2.6.4 is the base change to
K of the canonical model of wy,. In fact, the w,, which are defined over
the toroidal compactifications, are the canonical extensions of the automorphic
vector bundles, and their twists by the ideal sheaves of the boundaries are the
subcanonical bundles.
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6.1.2. Coherent cohomology and (B, Kj)-cohomology. We will write
H'(Sh(V), w,) instead of H'(Sh(V)“", w,), which is imperfect shorthand
for ‘

lim H' (xSh(V) 2. ©,)

K. X
where the limit is taken over toroidal compactifications (indexed by X') at finite
level (indexed by K). For i = 0, this is superfluous, by Kocher’s principle, except
possibly when n = 2 and F = Q, and the reader can be trusted to supply the
missing indices in this case. Likewise we write H'(Sh(V), w*) for

lim H' (xSh(V) 2, @, (=D5))

K, X
where Dy, = ¢Sh(V)5x — xSh(V). We let
H/(Sh(V), o) = im{H'(Sh(V), ®*®) — H'(Sh(V), w,)}.

Note that the ground field here can be taken to be any extension of K'. Moreover,
these definitions make sense over the ring O (), provided we restrict to those
K of the form K = G(Z,)K? or K = I.K”.

Over C the coherent cohomology can be computed in terms of Lie algebra
cohomology. Let g = Lie(G(R))c, and let g = p, @ &, @ p, be the Harish—
Chandra decomposition associated with £ (the eigenvalue decomposition for the
involution ad h(~/—1)). Let B), = p, @ &; this is just Lie(P,(R))¢ (so the Lie
algebra of P,(C)). We put

Ky =Uyx =C[R).

Let Ay(G) be the space of cusp forms on G(A). Then over C there is a natural
identification of G (A ;)-modules:

H/(Sh(V), ®,) = H' (B, Ki; Ao(G) ® W,), fori =0ord. (114)

Here we use the identifications of P,(C) with Py(C) and C(C) with Hy(C) to
realize W, as a ([3,, K;,)-module. For i = O this just restates the identification,
recalled in 2.7.2, of S.(K,C) with the space of U, x K-invariant smooth
functions f : G(A) — W, that are annihilated by p;, .

6.1.3. The x involution. There is an anti-holomorphic involution » of G —
Bun(X) that takes a G-equivariant bundle to the complex conjugate bundle; on
representations of P, factoring through the Levi quotient H, (which has been
identified over C with the stabilizer C in G, of h) it takes the irreducible
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representation W, to a representation W,. whose restriction to the maximal
compact subgroup of U,, = C(R) C Hy(C) is dual to the restriction of W,
but whose restriction to R* C G(R) coincides with that of «. Concretely, if «

is identified with the tuple « = (xo, (k;)), ks = (K1, - .., Kop, ), then k™ is the
weight

K*: (KS,(K;)), K(;: —K0+Cl(K), K; = (_K(T,bgs"'a_K(T,]) (115)
and

W = WY @ ve®,

where

bo
al) =20+ » Y K. (116)

oeX j=1
There is a unique, up to scalar multiple, c-semilinear, Kj,-equivariant
isomorphism W, —> W,.. Such an isomorphism is given explicitly by the
map that sends ¢ € W, to ¢* € W, where if h € Hy(C) is identified with
(ho, (he)) € C x ], ez, GLy, (C) via (15), then

¢*(h) = hg" - ¢ ((hy ", (won;h)).

Here w, € GL,,(C) is the longest element of the Weyl group of the standard
pair and the overline ~denotes complex conjugation. The K,-invariance follows
easily from (17).

The identification of G (C) with G¢(C) in 2.6.1 identifies Lie(Py(C)) with 3,
and Lie(H,(C)) with ¢,. It then follows that the map ¢ +—> ¢* is J3,-equivariant,
up to c-semilinearity.

The action of h = (hg, (h,)) € Hy(C) on Hom(c(/\dpf, C) 1is just
multiplication by 27 [] det(h,)*?; this is just the character

cex
Ky = (Fd, (k). Ky = (£2a,,...,£2a,).
Then the Hy(C)-representation
Home(AYp}, W,-) = Homc(A?pf, C) ®c W,-

is naturally identified with W, » (the identification depends on a choice of basis
of the one-dimensional space A%p; ), where

kP =K+t
The Killing form on g defines an Hy(C)-equivariant contraction map
ANpy ®c AlpF — C,
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and so defines an Hy(C)-equivariant inclusion

i : Wee = Home(A/p, ®c Apf, W) = Home(AYp;,, W,o).

6.2. Complex conjugation and automorphic forms. In this section we
describe three actions of complex conjugation on spaces of modular forms. Each
has an interpretation in Deligne’s formalism for motives of absolute Hodge
cycles, though we do not emphasize this here. We describe these actions in terms
of (B, K;)-cohomology as well in terms of coherent cohomology.

6.2.1. Complex conjugation on automorphic forms. Let m be a (g, K,) X
G (A y)-representation occurring in the space Ay (G) of cusp forms on G (A). We
define 7 to be the complex conjugate representation; that is, 7 consists of the
functions ¢(g) = ¢(g) for ¢ € . The map r — 7, ¢ — @, is c-semilinear and
K, x G(Ay)-equivariant, and even g-equivariant up to c-semilinearity. We then
obtain a c-semilinear G (A )-equivariant map

PRP—>PRP*
Ky A

(7 ®c W) (7 ®c We) S 25 Home (A%p; . ®7 ®c W) (117)

that is also ®J3,-equivariant, up to c-semilinearity. This induces a c-semilinear
G (A y)-equivariant isomorphism

cp  H (B, Kis 7 @c W) — H (B, Ki; T @c Wieo). (118)

Taking 7 to be the space of cusp forms Ay (G) of G(A) (so, in particular, 7 = 7),
we obtain a c-semilinear G (A ;)-equivariant isomorphism

cp : H(Sh(V), w,) —> H(Sh(V), w»). (119)
6.2.2. Complex conjugation on Sh(V'). Recall that
PC = (,C, c, Ov Lv_(‘a')ihc)v hC(Z) Zh(z)v

is just the PEL datum of unitary type associated with the hermitian pair (V,
—(-, -)yv)- The corresponding reflex field is F_y, = cFy = cF, the complex
conjugate of F. There is a canonical identification Gpc = Gp = G. The
respective stabilizers in G(R) of & and #¢ (action by conjugation) are the same:
they both equal U, (thatis, K, = Uy, = Kjc). Let X = G(R)/U,. We then have
identifications X —> X, = Xp, g — ghg ', and X —> Xp = Xpc, g
gh‘g~'. Bach of X, and X have a complex structure, and the pullbacks of these
complex structures to X are complex conjugates. In particular, the composition

Downloaded from https://www.cambridge.org/core. IP address: 71.63.163.5, on 06 May 2020 at 09:22:42, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.4


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core

E. Eischen, M. Harris, J. Li and C. Skinner 94

X, — X —> Xy is an anti-holomorphic map. So a holomorphic function
on X),c defines an anti-holomorphic function on X, and vice versa. This explains
the map F, in (124) below.

The automorphic sheaves on Sh(—V) are associated to representations of the
group Hp _y, which is canonically identified with Hy y = H, by switching the
roles of Ay and Ay). The analogue of (15) for Hy _y is the isomorphism

Hy_v;5, — Gux [] GLogo,(A0e) =G, x [] GL,, (S0).  (120)

oeXx oeXx

The identification Hyy = Hp _v is given in terms of (15) and (120) by (A,
(he)) — (hy, (ho’hgcl)). We have associated to each dominant character « of
the diagonal torus Ty, , of Hy _y a representation W, _y of Hy _y and hence a
vector bundle w, _y on Sh(—V). Given a dominant character x = (xo, (k,)) of
Ty, ,» we define a dominant character k° = (g, (k,.)) of Tk, _, - With respect to
the canonical identification Hy _y = H, y described above, there is an explicit
identification of Hy-representations

Wo v —> Wev, ¢ ((h, (hy) = ¢(ho, (wohoh,))). (121)

The Harish-Chandra decompositions g = p, @&, ®p, = p;. D b B p.
satisfy phi = pl and & = .. Let = be a (g, K;,) x G(Ay)-representation
occurring in the automorphic forms on G (A). Then the natural map

(T ®c W)X = (1% @ Wee )X S Home (Apy, 1 © Wyo 1)

(122)
induces a C-linear G (A y)-equivariant isomorphism

Foo : HBoe, Kie; 7 @c Weo _y) — H (P, Kis T @c Wien v). (123)

Taking 7 to be A (G) we then obtain a C-linear G (A )-equivariant isomorphism

Fy : H)(Sh(=V), 0 _v) — H{(Sh(V), w0 y). (124)

Note that no complex conjugation is involved in this isomorphism: F, identifies
a cohomology class on G, represented by a holomorphic modular form with
a cohomology class on G represented by an anti-holomorphic modular form,
simply because the groups G, and G, are canonically equal but the hermitian
symmetric domains have opposite complex structure.

6.2.3. The involution “t’ and the isomorphisms xSh(V) = +Sh(—V). Recall
that we have assumed that % is standard (see 2.3.2). This means that there is
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a K-basis of V with respect to which the hermitian pairing (-, -),, is given by
a diagonal matrix D = diag(dy, ..., d,), di,...,d, € K*, and such that the
image of & is diagonal with respect to the induced basis on each of the spaces
V, = V ®x.» C. Under the hypothesis that each prime above p in Kt splits
in /C, it is always possible to choose such a K-basis and the lattice L so that
D is a diagonalization of the perfect hermitian pairing on L ® Z, induced by
(-, )y we fix such a choice of /C-basis and a lattice L. Let I : V — V be the
K*-involution of V that is just the action of ¢ on the coordinates with respect to
this fixed K-basis. Note that L ® Z,, is I-stable, and the map induced by 7 on
L ® Z, interchanges L* and L~.

With respect to the fixed K-basis, G g is identified with a subgroup of
Resjc,oGL, (K), and the action of ¢ on K induces an automorphism g +— g
of G, (note that g¢ = Igl). This automorphism takes /4 to 4° and so maps
U, to itself. In particular, it induces an automorphism of X. The composition

X, — X 225 X =5 X (which is just ghg™' > gh¢g~") is holomorphic.

In particular, the induced map Sh(V)(C) — Sh(—V)(C) is holomorphic and so
a morphism of Shimura varieties over C.

We modify this map at p, to more easily compare level structures. Recall
that for each prime w|p we fixed decompositions L,, = L} @ L, (see 2.2).
We also fixed an O,,-basis of each Li, which gives an O, -basis of each L,,.
We define level structures at p for P¢ by taking L3* = Lj. Then I) _, =
1)y = 'Uy )~" with respect to this O,,-basis of L,,. This chosen O,,-basis of
L, may not be the KC,,-basis of V Q@ /C,, induced by the fixed /C-basis of V; let
Buw € GLk, (V ®x K,) = GL,(K,,) be an element taking the latter to former.
Let 8, = (1, (D'B,' B, wex,) € Qy x Hwex,, GL,(K,) = G(Q,), where the
isomorphism is determined by the fixed X-basis of V. Then

5,=08,". 6'G(Z,)5,=G(Z,, and 6&'I'68,=1_,. (125)

p P

We then define an automorphism g +— g’ of G(A) — G(A) by g’ =
v(g)~'8,"g8,. Given K C G(Ay) we let K' be the image of K under . As
a consequence of (125), if K = G(Z,)K”, then K’ = G(Zp)IZP and

(K" =K/ _y. (126)

Consequently, the map Sh(V)(C) — Sh(—V)(C) induced by g — g4, identifies
kv Sh(V) with K1~_VSh(— V). The following Proposition is then obvious.

PROPOSITION 6.2.4. The isomorphism g, ,Sh(V) — KT_VSh(—V) is defined
over O ). On moduli problems it is given by the map that sends a tuple
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(A, A, t,a, @) classified by Mp g, 1 (R) to the tuple (A, A,toc,aol,¢pol)
classified by M p. -+, (R) for any Ox.w)-algebra R.

The automorphism g > g takes pif to p;- and P, to Pj.. The action of g > g
on K, is identified via (17) as (hg, (h,)) (hg‘, (’h;l)). Let
=k ),
S0
Wer—y E Wy = W;ZV'
The map

Wer ™5 Wer Ly = W v ®IVI%, ¢ (Gho, (1)) = § (o, (o)D",

satisfies (k" - @) = k - ¢ for all k € K, = K. It follows that under the
isomorphism Sh(V) — Sh(—V) defined by ¢ — g', w _y pulls back to
wy.v, and so there are C-linear isomorphisms

F': H (Sh(V), w.y) —> H!(Sh(=V), o _y) (127)

that are G (A ;)-equivariant up to the action of the automorphism *{.” In particular,
these induce isomorphisms

F': Hi(,Sh(V), 0.0) —> Hi(gSh(=V), 0 y),  (128)
even over Oy (yy-algebras R C C. In particular, F restricts to an isomorphism
F':Sev(Kny Wi R) — Se—v(K[_y Y5 R) (129)

for R C C any Ox [ ]-algebra, where YT = =1 if both are viewed as
characters of the diagonal torus of the right side of (9) via the isomorphisms
(10).

The action of FT is described in terms of automorphic forms as follows. Let
7 be a (g, K;) x G(Ay) representation occurring in the space of automorphic
forms on G(A). We define 7" to be the space of functions ¢'(g) = ¢(g") for
¢ €. Themapmw — 77, ¢ — ¢, is C-linear and is both g- and K,-equivariant
up to the action of the automorphism ‘§’. The map

otest

(T @c We ) ree el (" @c Wit _y) o
is then a C-linear isomorphism that intertwines the actions of g and g for all
g € G(Ay). This induces a corresponding isomorphism

F' o H By, Ki; © @c W) —> H Pe, Kie; 17 @c Wit _y). (130)
Taking 7 = Ay(G) (and so w7 = ), we get F' from before.
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6.3. Serre duality and pairing of automorphic forms. Since
W,» = Home (A%p}, W,») = Home (A%, C) ®c W) ®@ v,

the natural contraction W, ®c W, — C gives a homomorphism of H,(C)-
representations

W, ®c W,» — Homg (A%, C) @ v*®.
This induces a natural map
W @ wep  — 'Qgh(V) ® L(k),

where L (k) is the automorphic line bundle attached to the character v, Since
the character is trivial on G*', L(k) is topologically the Ogyy,-bundle attached
to the constant (trivial) sheaf, but the action of G(A,) on L(x) is nontrivial.
Fixing a level subgroup K and a toroidal compactification g Sh(V) < ¢Sh(V)5,
we can extend this to a natural pairing

b d
0 R@wn — gy, ® LK)

and the analogous pairing on 0" ® w,». As in [Har90, Corollary 2.3], Serre
duality therefore defines a perfect pairing

H(Sh(V), o) ® H{ (Sh(V), o0) — lim H'(xSh(V)x, 2§y, ® L(K)).
K.z
(131)
The function g — ||v(g)||~** defines a global section of L(x)" and therefore
an isomorphism

lim H(¢Sh(V) 2, 24y, ® L)) = lim H(¢Sh(V) 2, 24, 1,.,)-

K. X K. X

The right-hand side is isomorphic under the trace map to the space of
functions C(my(V)) on the compact space my(V) of similitude components
of Sh(V). Composing with the projection of C(my(V)) onto the invariant
line C(7t(V))®—in other words, integration over (V) with respect to an
invariant measure with rational total mass—we thus obtain a canonical perfect
pairing:

(-, )% HY(Sh(V), w,) ® H(Sh(V), w,») — C. (132)

REMARK 6.3.1. In what follows, we will be using the Tamagawa number to
normalize the Serre duality pairings. This is likely to introduce a factor of a
power of 2 in a comparison of our results with those predicted by motivic
conjectures.
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The pairing (-, -)>*" can be described in terms of automorphic forms as follows.
Letp = p; @ p;,- Then (-, -)>" is just the pairing

H(By, Ki; Ao(G) ® W) @ H (B, K3 Ao(G) @ Wn) — C

defined by multiplication of cusp forms, contraction of the coefficients, and
integration. More precisely, let dg denote Tamagawa measure, and factor dg =
dg. - dgy, where dg., (respectively dg) is an invariant measure on G(R)
(respectively on G(A)). We assume the measure dg, takes rational values on
open subgroups of G(A[), and we write dg., = dko, x dx x dt/t, where dk,
is the measure that gives K, measure 1, dt is Lebesgue measure on the center
Zsw) —> R*—which disappears in the integral—and dx is a differential form
on p,; this will inevitably be rational over the reflex field of 4. We denote the
contraction

W, ®c Home (A%p;,, Home (A%p), W, @ v**)) — Homc(A*p, C(v*™)),

by
PR (¢, 9]

Then for
¢ € (Ay(G)"r ®@c W)X and ¢ € Home(A%p; . Ao(G) ®c Wen)™,
we normalize (-, -)fer so that

Ser

(@, ¢), [p(), @' ()]~ V(™ dg;. (133)

/G(Q) Zc(R\G(A)

It we use the basis dx of (A*p)Y to identify (A??p)¥ with C, then we write
[p(g2), ¢'(g)], for the element of C(v**) corresponding to [¢(g), ¢'(g)], and
(133) can be rewritten

Ser

(0, )" = [0(8), ¢ (&)]ax - V() ™“® dg.

/G(Q)ZG RNG(A)

In what follows we fix the basis dx and omit the subscript , from [e, e].
From (-, -)**" we obtain the hermitian Petersson pairing:

{00 HY(Sh(V), w) x H(Sh(V), 0) — C, () = (-, ep())E.
(134)
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6.4. A normalized pairing, trace maps, and integral structures. While the
pairing (-, -)>*" is canonical it is not compatible with traces of automorphic forms
with respect to levels (this is manifestly a failure of the right-hand side of (133)).
We correct this by introducing a normalization of the pairing (-, -)5* that depends
on the level. We then use this normalized pairing to define integral structures on
top degree cohomology. One consequence of these definitions is that the integral
structures are compatible with respect to the trace maps.

6.4.1. A normalized Serre duality. For an open compact subgroup K” C
G(A%) we define

(s Vek,  H (6, Sh(V), o) ® H (x,Sh(V), wp) — C (135)
as

1

. Ser
Vol(10,) RE (136)

('7 ')K,K,.

where I, = I,y and the volume Vol(I,) of K ,0 is taken with respect to the
Tamagawa measure dg also appearing in (133). In particular, if ¢ and ¢’ in the
left-hand side of (133) are both invariant by K,, then

1

0@, ¢' @1 vl ™““dg.  (137)
Vol(1?) Jo@zo@ncw)

<(pa (P/>:<,K =

From (137) it is easily seen that if ' > r and if ¢ is invariant by K, and ¢’ by
K/, then

/ / 02 0)
s @ )k, = (@, traceg, /g, «K.» trace y
(0. @)k, = (¢ K /K (@) k, K./, (@) = U1 e,g/,(,y ¢

(138)
The analogous relation also holds for ¢ invariant under K, and ¢’ invariant under
K,. The key point here is, of course, that 1, /1, - K, /K, and

0 0 070 0 #(1)/1,)
Vol(1,) = Vol(17) - #(I,'/1;) = Vol(I,) #(I,/I,/)#(Iro//]r,).
6.4.2. Integral structures on top cohomology. Let Ok be as in
Section 2.6.3. Fix V and write @, = w,yv. The spaces H,"(K,Sh(V),a),()
have natural integral structures over Oy, With respect to Oy ) -integral
structures on the underlying schemes, for any i. However, because the special
fibers become progressively more singular as r increases, we do not choose
integral structures on the schemes. For cohomology in degree i = 0, we define
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the Ok ()-structure on H)(k,Sh(V), w.v) by S (K., Ox ) as in Section 2,
specifically in Sections 2.5, 2.6.5, and especially 2.9. We then define the
Ox,(w)-structure on H!d(,(r Sh(V), wp) to be dual to the integral structure on
H,O(Kr Sh(V), w,) with respect to the pairing (-, -), ¢, defined in (135). In other
words, for any O () -algebra R, we have an identification

H{! (k,Sh(V), w0, R) = Homo,, . (Sc(K,, O (), R) (139)

induced by (-, ), x,. It follows from (138) that these integral structures are
respected by the trace maps:
¢ € H'(x ¢ € H'(x,Sh(V), .0, R).
(140)

Sh(V), wp, R) = traceg, x,

6.5. (Anti-)holomorphic automorphic representations. By an automor-
phic representation of G we will always mean an irreducible (g, K;) x G(A,)-
representation occurring in the space of automorphic forms on G(A). This
convention allows us to distinguish holomorphic representations from anti-
holomorphic representations. (Note that K;, which is the stabilizer of # in G (R),
need not project to the maximal compact in G(R)/Zs(R).)

6.5.1. Holomorphic and anti-holomorphic cuspidal representations of type
(k, K). Let m be a cuspidal automorphic representation of G (always assumed
irreducible). Write 7 = n,, ® 7, where 7w, is an irreducible admissible
representation of G(A,) and m is an irreducible (g, K;)-module. Let K C
G(A;) be an open compact. We say m is holomorphic (respectively anti-
holomorphic) of type (k, K) if H°(P), Kj; e ®c W) # 0 (respectively
HYB,, Kj); moo ®@c Wep) # 0) and if mf # 0. In this paper, we will only
be concerned with 7 that are either holomorphic or anti-holomorphic. If
is holomorphic (respectively anti-holomorphic) of type (x, K), then by our
conventions 7 is anti-holomorphic (respectively holomorphic) of type (k, K).
Note that, with G fixed, 7 can be either holomorphic or anti-holomorphic, but
not both (unless G is definite); however, the isomorphism F, of (123) identifies
anti-holomorphic representations of G, with holomorphic representations of G,
and vice versa. Although Hida theory is generally understood to be a theory
of p-adic variation of (ordinary) holomorphic modular forms, the nature of the
doubling method makes it more natural for us to take our basic object 7 to be
an anti-holomorphic (and anti-ordinary, see 6.6.6 below) cuspidal automorphic
representation of G,. Thus, 7 is a holomorphic automorphic representation of
G, but the natural object there is 7”, or 7, which is again anti-holomorphic.
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Because this is inevitably a source of confusion, reminders of these conventions
have been inserted at strategic locations in the text.

REMARK 6.5.2. If 7 is holomorphic or anti-holomorphic, then, by the
considerations in [BHR94], 7, is always defined over a number field, say
E (7). We will always take E (;r) to contain X'

6.5.3. The b involution and the MVW involution T. Let m be a cuspidal
automorphic representation of G. Let &, be the central character 7. If (7., ®c
W) Kn £ 0 (for example, if 7 is holomorphic of type («, K)), then &, o, (t) = t**)
fort € R*. Let

=1 Q@& ov| =7 @ |[v]*". (141)
Because 7 ® |, o v|‘% is unitary,

7Tb

12

7, (142)

and when 7 occurs with multiplicity one, as we will generally assume, 7° and 7
are the same space of automorphic forms. In particular, the operation & +> 7°
is an involution of the set of cuspidal automorphic representations of G. If r is
holomorphic, then 7" is anti-holomorphic, and vice versa.

The involution g — g' of G that was fixed in 6.2.3 is of the type considered
by Moeglin, Vigneras, and Waldspurger in [MVW87, Ch. 4]. In particular, there
is an element iy € GLx+(V) such that A is c-semilinear for the KC-action on V
and (hgv, hpw)y = (w, v)y and such that g = hoghgl; with respect to the fixed
K-basis of V, hy is just ‘act-by-c on the coordinates’. Let 7 = ), 7, be an
automorphic representation of G. If the hermitian pair (V, (-, -),/) is unramified
at £, then it is a deep result proved in [MVW87, Ch. 4] (cf. [HKS96]) that

) = (0 Ad(ho)) ® (7' ov) =V, (143)

In particular, if 7 satisfies strong multiplicity one—which we expect if the places
at which 7 or the group G is ramified all split in IC//KC* and its base change to
GL, x is cuspidal —then 7" = 7V and so 77 @ [|[v[|**) = #° = 7. In any event,
(143) permits the Hecke actions on 7” to be expressed in terms of the Hecke
actions on 77, at least at the unramified primes £. As will be explained later, the
doubling method will pair 7w and (a twist) of 7°, but we will use the involution
‘f” to compare level structures and Hecke algebras. This partly motivates our

putting
K'=K', ¢ =v", and «" =« 190, (144)
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6.5.4. Relating (-, -), to (-, ~),§er. Let 7w be a holomorphic cuspidal automorphic
representation of G of type (k, K). Recall that the canonical pairing (-, -), :
m @ m¥ — C can be expressed as

(0. ¢)n = / 0@ (@ dg, gemgen. (143
G(QZcR\G(A)

The pairing (-, -)fe‘ can be expressed in terms of (-, -), as follows.

Let wy, ..., w, be a basis of W, and let w;’, ..., w,, be the dual basis of W..
As W,» is the twist of W’ by a character, the w;” also define a basis of W,.». Let
@ € (¥ ®c W, )% and ¢’ € Hom(A/p;,, 7° @c W,n)Xr. Write p = Y, ¢; @ w;
and ¢’ = Zj ¢ ® w;. Then it follows from (133) that

(0. 05 = (i @) - V[T (146)

l

Let x be a Hecke character of type A,. Recall that we have defined a twisted
Petersson norm in (4.1.6), pairing vectors in 7 with vectors in 7” ® x ! o det.
We may analogously define a pairing

(o im Q' @ x ' odet
with the property that

(0, @28 = i, @I )y (147)

1

Here the subscript x at the end of (147) has the same meaning as in (4.1.6).

6.6. Hecke algebras. We continue to let G = G; = GU(V) and we return to
the notation of Section 2.9.4; thus, classical modular forms are of weight «. Fix
a positive integer r as in 2.5 and a level subgroup K = K, = K? - I, C G(Ay).
Henceforth we will write T(g) = 7,(g) for the Hecke operators [K*gK?] for
g€ G(A?); we have also introduced U -operators U, ; in (23).

For any Sp-algebra R C C, we let Tk, ,.r be the R-subalgebra of
Endc (S (K,; C)) = Endc(H(k,Sh(V), ®,)) generated by the Upjvw =
|/</(tw,j)|;lUw,j, where «’ is related to « as in (30), and by the T'(g) = T,(g)
for g € G(A?), where § = S(K?) is the set of places of ™ at which K?” does
not contain a hyperspecial maximal subgroup. (Since G is a Q-group, this needs
to be clarified. We let G(A?) =11 » G(QP)S , where the product is taken over

rational primes. If p is not divisible by a prime in S then G(Q,)* = G(Q)).
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In general, let P denote the set of primes of Kt dividing p, and write
P = P |] P2, where primes in P; split in K and those in P, do not split.
Then
G@,) = [[ GL®.K}) x Gp,.
veP;

where G, is the subgroup of elements ((x,,), 1) € [ ], «p, GL(n, Ky) X Q; such
that each x,, preserves the hermitian form on V(K,) with similitude factor .
Write SNP; = S,,;,i = 1,2. Then

G@Q)*'= [] GLK)) xGp,

U€'P] \Sp'l

if S,, is empty, and G(Q,)* = Hvep]\sp,, GL(K) otherwise. We could also
ignore all the divisors of p if even one of them belongs to S, since dropping
finitely many generators from the unramified Hecke algebra does not change
anything.)

We similarly define Ty . and T7<,,K, r by replacing U, ;. with
U, i« = l&'(tw)|pU, ; and, in the second case, also replacing S, (K,; C)
with H?(x, Sh(V), o) = HY(Sh(V), w,)% . We will follow the convention of
adding a subscript ‘V’ (respectively ‘—V’) to notation if it is needed to indicate

that it relates to the hermitian pair (V, (-, -),,) (respectively (V, —(-, -),)).

LEMMA 6.6.1. Let R C C be a subring.

(1) There exists a unique R-algebra isomorphism Tk, . r = Tj’( wop I
TY, such that quj‘,( = Uu:,j.lcn and T(g)* = |v(g)||*® - T(g7h).
(ii) There exists a unique R-algebra isomorphism Tk, . v r RN TK?,K”,*V,R’

T T’ suchthat U, ; = U, Uy, j. and T(g) = T(g") = T(3).

w,n,k”

d

(iii) There exists a unique isomorphism Ty . —> To ., 1

toc(r), U, en 10 U, . .o andT(g)toT(g).

2] w,J

that mapsr € R

Proof. Part (i) follows from Serre duality, part (ii) from the isomorphism F, and
part (iii) from the isomorphism cp. O

For a nebentypus  of level r (a character of Ty (Z,) that factors through
Ty(Z,/p"Z,)), we let Tk, . 4 r and T‘,’(r_’KWER be the quotients of Tk, .z and
T‘11<,,K, z upon restriction to the (invariant) subspaces S, (K,, ¥, C) C S,(K,, C)
and H(x,Sh(V), w,)", the subspace of H?(x,Sh(V), w,) on which the action
of K? (which factors through Ty (Z »/ D Z,) as in Section 2.5) acts via .
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LEMMA 6.6.2. The isomorphisms in Lemma 6.6.1(i)—(ii) induce R-algebra
isomorphisms

d

KW' p,R and TK;»,K,lﬁ,V,R — T

Tk, «u.r — T K k", —V,R"
This is clear from the definitions.

The R-modules S, (K,; R) and S.(K,, ¥; R) are stable under the action of the
Hecke operators Uy, ;. and T(g), g € G(Afc). In particular, the cusp forms over
C can be replaced by those over R in the definition of Tx , x and Tk . y &.

For any of these Hecke algebras T?, we write T*? for the subalgebra generated
over the ring R by the T'(g), g € G(Afc) (so omitting the U, ;, and U, ; ). The
isomorphisms of Lemmas 6.6.1 and 6.6.2 restrict to corresponding isomorphisms
of these (p-depleted) Hecke algebras.

If R = S, then we omit the subscript ‘R’ from our notation.

6.6.3. The homomorphism AL, isotypical subspaces, and the multiplicity one
hypothesis. Let w be a holomorphic cuspidal representation of G of type (k,
K,). Then the natural action of T} _ on 7% is given by a character that we
denote A?; these homomorphisms are compatible under the natural projections

Ty . — Tk .. r =1, so we do not include the r in our notation. Via the

isomorphism T, .y —> Ty o _y of Lemma 6.6.1(ii), A2 = AL determines

a homomorphism )Lf;:?/ of Ti . which, by (143), satisfies

b
r ok, —

A =20 (148)

For an Sy-algebra R C C, the homomorphism A? extends R-linearly to a
homomorphism of the Hecke algebras over R; we use the same notation for
this homomorphism.

We say that 7 satisfies the multiplicity one hypothesis for  if:

HYPOTHESIS 6.6.4 (Multiplicity one hypothesis). For any holomorphic
cuspidal 7’ # 7 of type (k, K,), A, # AL.

This multiplicity one hypothesis for 7 is expected to hold if § = S(K?)
consists only of places that are split in JC/K* (so all local L-packets are
singletons) and if the base change of 7 to GL,, i is cuspidal (so 7 is not obtained
by endoscopic transfer from a nontrivial elliptic endoscopic group of G). When
G is quasisplit multiplicity one has been established for the unitary group by
Mok [Mok15], and the general case has been proved under certain restrictive
hypotheses by Kaletha et al. [KMSW14]. All this work is based in part on results
that have been announced by Arthur but that have not yet appeared.
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We will generally assume that & satisfies this multiplicity one hypothesis.
This is not indispensable, but it simplifies the notation. However, one of
the referees pointed out that this hypothesis may be restrictive for certain
applications. For example, a 7 that is ramified at a prime v that is inert in
KC/K* cannot in general be distinguished from a 7’ that is isomorphic to &
at all unramified places; indeed, m, can belong to an L-packet that contains
several nonisomorphic representations. Such 7 arise naturally by automorphic
induction from representations of unitary groups over cyclic extensions of Ct.
In Remark 9.3.2 we sketch a construction without this hypothesis.

We fix a basis of the one-dimensional space H°(3;,, K;; 7o ®c W,) and
a choice of E(m)-rational spherical vector in n‘f . Let S (K,,C)(mr) be the
AZ-isotypic subspace of S.(K,,C) for the action of Ty .. There is then an
embedding

jn : Ho(mha Kh; nKr ®(C WK‘) ; ijr — SK(Kra (C)(JT)

of Ty ,-modules.

LEMMA 6.6.5. Let w be a holomorphic cuspidal automorphic representation of
type («, K,), and suppose m satisfies Hypothesis 6.6.4.

(1) The injection j, defines an isomorphism
jn : JT;(S &® 7[[? _N) SK(K)‘7 C)(]T)

(ii) Let A be any extension of A2 to a character of Tk, . . Let R C C be a finite
extension of E (i) containing the values of A, and let S, (K,, R)[A] be the
localization of the Tk, . r-module S, (K,, R) at the prime ideal p; C Tk, . r
that is the kernel of the character A; in other words, S,(K,, R)[\] is the A-
isotypic component of S,.(K,, R). Then j, defines an isomorphism

Jr it @al A > Sc(K,, R)[A] ®& C = S.(K,, O)[A].
Here JT;’ [A] is the subspace ofrr;' on which each U,, ; . acts as A(U,,j ).

6.6.6. The (anti-)ordinary projector and (anti-)ordinary Hecke algebra.
Suppose R C C is the localization of a finite Sy-algebra at the maximal prime
determined by incl, or a p-adic algebra in the sense that ¢,(R) is p-adically

complete.
Recall the definition (111) of the ordinary projector ¢,. Set T‘,’gfyk_’ r=¢6Tk cr
and T, , ¢ = e Tk, «y.r- Then T, o and T, , , are just the rings obtained
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by restricting the Hecke operators to the (stable) subspaces S™(K,; R) and
S(K,, ¥; R).For R not p-adic we define the latter modules to be the respective
intersections of S, (K,; R) and S,(K,, ¥; R) with the ordinary spaces over the
p-adic completion of R (that is, the completion of incl, (R)).

Similarly, let U, = [],c5, [1j Uy ). and let e; = lim (U, )" (as an

operator, when it exists). We call this the anti-ordinary projector, and put
a-ord  _ ,—md aord  _ ,—d
Ty r = €. Tk, g and T‘Il(‘.);.xll,R =€ TK,K,'/AR'

LEMMA 6.6.7. Suppose R is as above. The isomorphisms of Lemmas 6.6.1(i)—
(ii) and 6.6.2 restrict to R-algebra isomorphisms:

: ord ~ a-ord ord ~ a-ord
O Txler — T oo gand T p —> TR0 p

i ord ~ ord ord ~ ord
(i) T, v r > TKE,KLV,R and T¢T .y v & > TK:’,Kb"//—I’,V,R'

This is immediate from the definitions.

6.6.8. Spaces of ordinary forms and the character A,. Let w be a holomorphic
cuspidal automorphic representation of G of type («, K, ). Let

ord __ I

T, = e,

This space has dimension at most one and it does not depend on r, in the sense
that e,(n;" = e,(n,ﬁ” for all # > r. This is a consequence of the following:

THEOREM 6.6.9 (Hida). For any representation w, of G(Q,), the ordinary
eigenspace e ) C ) is of dimension < 1, for any r.

This theorem is a variant of [Hid98, Corollary 8.3] (we thank Hida for this
reference). The proof, an adaptation of Hida’s, is given in Section 8.3 below.
We will say that 7 is ordinary if n;rd # 0. Note that n;’rd is stable under the
action of 1°, and so I° will act on nl‘j‘d (when it is nonzero) through a well-
defined character vr; we call its identification with a character of Ty (Z,) the
ordinary nebentypus of .
The space

b,a-ord __ — b, I, b
T e DT[p C 7Tp

p.r Tk

is at most one-dimensional, and is nonzero (and so has dimension one) if and
only if yrl‘}rd is nonzero. This follows from Lemma 8.3.6 below. While it is not
generally true that 77°%°" is independent of r, if ¥’ > r then Lemma 8.3.7 asserts

p.r
that
b,a-ord __ _ b a-ord
trace,(r/Kr, np.r’ = np’r
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Suppose that 7 is ordinary. We let A, be the (unique) extension of A” to the
Hecke character giving the action of Tk, , on ﬂ;rd ® 7"k For R as in 6.6.6,
this character factors through T‘,’g:",(’w! r for ¢ the ordinary nebentypus of m. Let
E(),) be the finite extension of E(7) generated by the values of X,, and let
R(A;) be the localization of the ring of integers of E(A,) at the maximal ideal
determined by incl,; then A, is R(A,)-valued. Let A, be the reduction of A,
modulo the maximal ideal of R(A); this can be viewed as taking values in the
residue field of Z,,,. We let

S(K,, k, w) = {ordinary holomorphic 7" of type («, K,) such that Ao = Az}
(149)
Starting in 9.1.6 we will also write 7’ € S(K,, k, w) when both 7 and 7 are
anti-holomorphic (and anti-ordinary); this means that 7"* € S(K,, k, 7”) where
7” is holomorphic of type (, K,) and the notation is used in the sense of (149).

LEMMA 6.6.10. Let w be a holomorphic cuspidal automorphic representation
of type (x,K,). Suppose m is ordinary. Suppose also that m satisfies
Hypothesis 6.6.4. Let R C C be the localization of a finite extension of
R(Az) at the prime determined by incl, or the p-adic completion of such a ring.
Let E = R[]

() SOYK,; E)[hz] = e.Sc(K,; E)[Ar] and j, restricts to an isomorphism
o @nd =l S $K,; Bl © C.

(1) Let m, be the maximal ideal of Tk, . r that is the kernel of the reduction of
A, modulo the maximal ideal of R. Let S,‘(’fd(K,; R), be the localization of
S°(K,; R) at my. Then

SCUK,; R[] = S7U(K s R)x N STU(K,s E)Ag]

is identified by j, with an R-lattice in 19" ® n& = x5, and STU(K,, R),
is identified with an R-lattice in

7,0ord '\Kg
@ Ty ® (nS) :
7'eS(Ky,k,7)

This last identification is via @,/ Ay.

We also need a dual picture. Let
$c(K,; R) = Homg(S(K,; R), R) and
$7U(K,: R) = Homg(SI(K,; R). R).

Downloaded from https://www.cambridge.org/core. IP address: 71.63.163.5, on 06 May 2020 at 09:22:42, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.4


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core

E. Eischen, M. Harris, J. Li and C. Skinner 108

These are Tk, , g-modules through the Hecke action on S, (K,; R), so S’;’Yd(K,,
R) is a T$, ,-module. The normalized Serre duality of Section 6.4 identifies

S.(K, : R) with
H%(K,,R) = {p € H(x,Sh(V), we0) : (Sc(K,; R), @)k, € R}

(The bundle w,» is the subcanonical extension of its restriction to the open
Shimura variety; thus, the space H?(k,Sh(V), w,») is represented by cusp forms
and the pairing above is well defined.) Let S™**(K,; R) C H%,(K,, R) denote
the annihilator of S™(K,; R) with respect to the pairing (-, )e.x,- Then (the

normalized) Serre duality identifies §,‘jrd(l(,; R) with
H™ (K, R)
= {p € H(x,Sh(V), 00) /ST (K, R) = (ST(K,: R), @)k, S R}.
Each of these is a Tk, , z-module through its action on S,(K,; R) or,

equivalently, the isomorphism of Lemma 6.6.1(i), so HKd,;(’rd(K,; R)isa T‘}{rf.iq,(’ I's
module.

LEMMA 6.6.11. The natural map H;lD (K,; R) — debord(K,; R), which is just
restriction to S,f’d(K,; R), induces an isomorphism

e, HY (K3 R) —> HY™(K,5 R). (150)

Proof. This is an immediate consequence of Lemma 8.3.4, (iii). O

Let 7 be a holomorphic cuspidal automorphic representation of G of type («,
K.). Then 7" is anti-holomorphic of type («’, K,). The choice of a basis of the
one-dimensional space H (3, K},; 7o, ®c W,p) determines an injection

Jao t HO OB, Kis 75 @c Wen) Z "5 < HY, (K5 C) = HY (5, Sh(V), w,0).

LEMMA 6.6.12. Let 7, R, and E be as in Lemma 6.6.10. Let H,f,;ord(K,, R), be
the localization of H,fb‘fr‘f(l( -, R) at my, and let

HY™ (K, Br] = HY™ (K5 R)x N HE (K3 E) Ay ]
where the notation [\, ] again denotes the A\, -isotypic component.

(i) The inclusion j, restricts to an isomorphism

jhmrr gt =gl = HY(K,, E)] ®k C.

p.r
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(ii) The map j, identifies H**(K,; R)[r] with an R-lattice in 7 ;" ® ",
and H**Y(K,; R), is identified with an R-lattice in

1,b,a-ord 1,b,Kg
@ Tpr ® 7y :

n'eS(K, k)
This last identification is by @] ,.

(ii1) Normalized Serre duality induces perfect T‘,’gfﬁKﬁ r-equivariant pairings (with

respect to the isomorphisms of Lemma 6.6.7)

S(K,; R)[m] ®x H(K,; R)[n] —> R and
ST(K,; R)x ®x H"(K,; R): — R.

For any r > 0, we say m is ordinary of type (k, K,) if @ is holomorphic of
type (k, K,) and if the image of j, has nontrivial intersection with S;’“d(Kr, R)
for R as in Lemma 6.6.10 (this is independent of R). In that case, ,, defined as
above, takes values in a p-adic integer ring, say O,, with residue field k(rr), and
weleti, : T k.« — k(i) denote the reduction of A, modulo the maximal ideal
of O,.

6.6.13. Change of level. For fixed k we consider the inclusion

S (K, R) — ST4(K,. R) (151)
with 7’ > r and the dual map

S (K, R) — 8Y9(K,, R). (152)

LEMMA 6.6.14. Let R be either a local Z,)[A-1-algebra or a finite flat Z.,[ 1, 1-
algebra. Then the image of the map (151) is an R-direct factor of Sf,‘?,(K,.«,
R), identified with the submodule of 1./ I,.-invariants of the latter. Moreover, the
morphism (152) is surjective.

Proof. The first assertion is obvious; the second is an immediate consequence of
the first. O

6.7. Normalized periods. Fix the group G = G, as above. We assume 7 to
be an anti-holomorphic representation of G of type (x, K) and anti-ordinary at
p with character .
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LEMMA 6.7.1. Let R be as in Lemma 6.6.10. The images

_ 1 d,ord d,ord —1 b1\ Ser
Lir] = Nol(ly, N1 v ﬂl_v,r)<HK'V (K, 9, B)x], HS™ (K, ¢~ R[]

1 d ord d,ord —1 S
L,=———— K, ¥, R)[x], HS™ (K} s R) o)
Vol(ly, mLW)( (K, ¥, Rl HSZ, (K., ¥ ) )
are rank one R-submodules of C, generated by positive real numbers Q[m] and
0., respectively.

Here we have used the identification (124) to evaluate the pairings.

Proof. Recall that 7, and n; = 7, are defined over the finite extension
E(r) C C of Q. Then Schur’s Lemma together with the irreducibility and
admissibility of the representations 77, and 77, implies that the pairing (-, -)>" is
a C*-multiple of a pairing taking values in E(7) on given E (;7)-structures, and
the hermitian nature of the Petersson pairing (and its relation (134) with Serre
duality) shows that this multiple is a positive real number. This is essentially
explained in [Har13a] Since R is a discrete valuation ring and H, 4 O‘d(K , W,
R) and de) "fi/(K e ¥~!, R) are finite R-modules, the result follows 1mmediately
from this. O

The numbers Q[m] and Q, are well defined up to multiples by R*; they
are respectively unnormalized and normalized periods for 7. We can also write
Q[rly and Qv to emphasize the dependence on G = G,. Note that Q[7"]_y =
Qlxly and Qv _y = QO v. Furthermore, these periods are independent of r >> 0.
This is essentially an easy consequence of the properties of anti-ordinary forms
(see also Lemma 8.4.9)

Let

HE (K, R[] € HE™ (K, Y™, R

be the orthogonal complement to H,ﬁ{'{,’rd(K,, ¥, R)[r] with respect to

m( S This is the intersection of H:b’,"fi/(Kf,x/f‘l, R),» with

D HE™ (K ¥ RITDIA].

DEFINITION 6.7.2. Define the congruence ideal C(w) = Cy(;r) C R to be the
annihilator of

HE" (K R /HE™ (K, v R+ HEY (K, ¥, R[]

LEMMA 6.7.3. Let c(wr) € R be such that c(w)Q, = Qlr]. Then c() is a
generator of C (7).
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Proof. This is an elementary consequence of the definitions. O

More generally, the congruence ideal C(;r, M) can be defined for any T;‘,’ri IS
module M as the annihilator of M,»/(M[r"] + M[x]}), where the notation
has the same meaning as above. In particular, we can define C(, T) to be

. ~ b,ord
the congruence ideal for T¢4 . — T "

R &0 considered as a free module over
itself.

REMARK 6.7.4. The congruence ideal C(x) has a local component, due to

. . b,Ks
possible congruences between the representation yrlb;‘""d ® y"* and the J'L’;'md ®

(m5)>Ks for ' such that A, = A, . Here if S has the property that, for every
rational prime g, either all the primes of Xt dividing ¢ split in X or none of them
does, we can view the latter as representations of the (integral) Hecke algebra of
K s-biinvariant functions on GU(V)(A ). The separation of global and local
components of C(;r) will need to be understood for applications, but it is not
addressed here.

6.7.5. Normalized periods twisted by Hecke characters. Let x be a Hecke
character of type Aj. The twisted pairings (4.1.6) and (147) give rise to
period invariants that account for the Hecke character twist. We reformulate
Lemma 6.7.1 in this framework. If the (anti-holomorphic) representation 7°
contributes to the space denoted H,j,’."_rdv, we let k” x x denote the coherent
cohomology space to which 7° ® x~! o det contributes. Then we can define
the R-module
HE" (K ¢ R[], = Hj;f;‘?_V(Kf, v R’ ® x ' odet].

Note: This is not a simple algebraic twist of the original ng,"_‘dv(Kf RV
R)[7"]! Even the rational structure is modified by a CM period corresponding to
x. See [Har97, Section 2.9] for examples of this when F* = Q.

The extension of Lemma 6.7.1 is then

LEMMA 6.7.6. Let R be as in Lemma 6.6.10. The images

L[7T] — ;<Hd.\(/)rd(l(’ 1//’ R)[T[], Hdb,ord (Kb, w—l’ R)[jTD])Ser
VOI(IV,r N va,r) © v ! ‘

1

= W(H:‘:&“‘(K, ¥, R[], HE ™ (K !, R)w )3

7T 1%

are rank one R-submodules of C, generated by positive real numbers Q[m, x]
and Q ,, respectively.
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We may define C (i, x) by analogy with C (7). Then the relation between the
two period invariants is again determined by a congruence number:

LEMMA 6.7.7. Let c(m, x) € R be such that c(mw, x)Qx, = QOlm, x]. Then
c(m, x) is a generator of C (7, ).

However, since the family of p-adic Hecke characters is smooth, it is easy to
see that C (7, x) and c(7r, x) do not depend on .

6.7.8. The Gorenstein hypothesis and the congruence module. In what follows,
R is a sufficiently large finite flat p-adic integer ring.

DEFINITION 6.7.9. Write T = T, := (T¢, z)». The T-module S(K, R) is
said to satisfy the Gorenstein hypothesis if the following conditions hold.

e There exists an isomorphism
G = Gg.r : T = Homg(T, R)
as T-modules.

o S™(K, R), is free over T.
The T .-module S™(K, R) is said to satisfy the Gorenstein hypothesis if all

K,k,R
its localizations at maximal ideals of T , r satisfy the two conditions above.

Note that we are using the notation T rather than T for the localization at a
maximal ideal of the ordinary Hecke algebra. The following is then obvious.

LEMMA 6.7.10. Assume S™ (K, R), satisfies the Gorenstein hypothesis. Then
we have
Cy(m) =C(m,T) = C_y(n").

The congruence ideal for w can be calculated as follows. We assume the
multiplicity one hypothesis, so that the localization of T at the kernel of A, is
of rank 1 over R. Let ey, ..., e, be an R-basis for T, and let ej, ..., e be the
dual basis of Homy (T, R). Write E = Frac(R), and write

Tr=TQ®r E=®E,,

indexed by the maximal ideals A, of T, with w = m;. We assume R is
sufficiently large that £, = E. Choose d, ..., d, € T that form a basis of T,
with d; an R-generator of TNE, and ds, ...,d, an R-basis of TN P,_, E..
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Write ¢; = ) ¢;;d;, with ¢;; € E. Then

C(w, T) = sup —v(cin) (153)
¢i1#0
where v is the valuation on R.
The following lemma is then clear:

LEMMA 6.7.11. The second isomorphism of Lemma 6.6.2 takes C(m)
isomorphically to C(7").

We omit the statement of the analogous assertion for the ideal C (7, x) which,
as noted above, does not actually depend on .

REMARK 6.7.12. The normalized period Q, and the generator c(;) of the
congruence ideal are well defined up to units in R. However, this ambiguity
is unsatisfactory; one expects there is a natural choice of global function ¢ in T
which is not a zero divisor and whose value at the classical point = generates
C (7). This would allow a uniform choice of periods Q. ,.

Let G, be the algebraic group introduced in [CHTO08] as the target of the
compatible family of ¢-adic representations attached to m; it is the semidirect
product of GL(n) x GL(1) with the Galois group of /C/K*. It is natural to
expect that ¢ can be taken to be a p-adic L-function attached to the adjoint
representation on the Lie algebra of §,,. The corresponding complex L-function
has a single pair of critical values, interchanged by the functional equation, so the
hypothetical p-adic L-function would be an element of T, without any additional
variation for twists by characters.

7. Families of ordinary p-adic modular forms and duality

7.1. Big Hecke algebras. We return to the notation of Sections 6.6 and 6.6.6.
In particular G = Gy, and we let Ty = Ty, (Z,) be the torus introduced in
Section 2.5.

Let R be a p-adic ring. The inclusion S4(K,, R) C S"K,, R), r' > r,

. . . d d
defines by restriction a map of ordinary Hecke algebras T¢,  » — Ty, x. Let

ord 1 ord
TKP.K,R - LlnTki’,K,R'

r

The following theorem is due to Hida:

THEOREM 7.1.1. For any pair of characters k1, ky of Ty, there is a canonical
isomorphism

-~ Tord

ord
TK”,Kl,R K? k2, R*
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Thus, we drop the superscript ‘ord’ and write Tg» z to designate any T‘;("E,K, R
without fear of ambiguity. We will even write T for Tg» x when there is no danger

of ambiguity.

REMARK 7.1.2. In the application to unitary groups this theorem and
Theorem 7.2.1 are special cases of [Hid02, Theorem 7.1] and the results
of [Hid04, Ch. 8]. Hida’s Theorems 7.1.1 and 7.3.1 are proved assuming the
conditions (G1)—(G3) mentioned in connection with (32).

As noted in (140), the trace map traceg, /x,, maps H,(K,;; R) to H%,(K,; R)
for all » > r > 0. It follows easily from the definition of the anti-ordinary
projectors e_), that this trace map also maps e_), HKdD( K.;R)toe  ,H KdD (K, ; R),

yielding a natural homomorphism T?_),rin, R = T;ﬁ“ﬁn » that is compatible with

the isomorphisms of Lemma 6.6.7(i) and the maps TS, . — TR¢, .. In
particular, putting

Ty o g = Hm T, .
the isomorphisms of Lemma 6.6.7(i) induce an isomorphism

Tocx — Tilio g (154)

Note that it then follows from Theorem 7.1.1 that T49"¢,,  is also independent

of the weight «, and we write T4 for T4

. KPP R
We similarly define
b .__ rmpord 1 ord b,ord __ rpa-ord T a-ord
Tio g =T 0 = @TK;W’K»,R and Ty, p =T oo g = @TK[“”KD.D’R'
r r
We then have isomorphisms
Tz — T s oo (155)
KPR KPP R KPP R?

where the first isomorphism is induced by those of Lemma 6.6.7(ii), and
the second isomorphism is induced by the corresponding version of the
isomorphisms in part (i) of the same lemma.

Via the isomorphisms in (154) and (155) we will view H%™(K,; R),
Se(K?; R), and H,f,i‘l’)rd(Kf; R) as Tk» g-modules.

7.2. The control theorem. Let Arx = R[T]], the completed group algebra of
the integer points T = Ty (Z,) of the torus Ty. Then Tg» g is a Ag-module such
that ¢ € T is identified with the Hecke operator K, ¢ K,. For any tame character €
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of T we let Ag . denote the localization of Ay at the maximal ideal defined by €.
Let A% C Ag be the completed group algebra of the maximal pro-p-subgroup
of T, and define A% analogously. As noted above (see also (33)) the following
Theorem is a special case of [Hid(02, Theorem 7.1].

THEOREM 7.2.1.

(i) For each tame character €, the Hecke algebra Ty g . is a finite, free A% -
algebra.

(ii) (Control theorem) Let 1, C A% be the kernel of the map A, — R C C,
defined by the character k. Suppose k is sufficiently regular. Then the
natural homomorphism

0
TKP,R ®Arlle AR/IK —> TKf,K,R

is an isomorphism.

7.3. The Gorenstein and multiplicity one hypotheses. Fix a cuspidal
holomorphic automorphic representation 7 of G = G; which is ordinary of
type (k, K) as in Section 6.6. (Be warned, however, that in the main theorem
7 denotes an anti-holomorphic representation.) We let R = O,, and let
Ax = Ao, = O;[T], A} = Ay, . The homomorphisms A, : Tx 0, — O
and A, : Tk.o, — k() induce homomorphisms L, : Tgr 0o, — O, and
L,: Tkr.0, — k(mw) of A -algebras. Let m, = ker L., and let

T = Tﬂ = T](ﬂ,(jﬂ,m]r

denote the localization, with notation as in Section 6.7. Here and below we use
T to designate an ordinary Hecke algebra (at fixed level I. or not) localized at
7, and T to designate a nonlocalized ordinary Hecke algebra. The intersection
m, N A, is the maximal ideal defined by some tame character of 7.

The following theorem is immediate from Theorem 7.2.1.

THEOREM 7.3.1.

(i) The Hecke algebra T is a finite, free A% -algebra.

(ii) (Control theorem) Let 1, C AY be the kernel of the map A% — O, C
C, defined by the character k. Suppose « is sufficiently regular. Then the
natural map

Tr a0 A7/ = Tyr o,

is an isomorphism.

Downloaded from https://www.cambridge.org/core. IP address: 71.63.163.5, on 06 May 2020 at 09:22:42, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.4


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core

E. Eischen, M. Harris, J. Li and C. Skinner 116

Here and in what follows, for any r and K” we will let T, act on
Homp, (S,‘:'d(Kf, O:), O;)m, by the natural action. We consider the following
hypotheses:

HYPOTHESIS 7.3.2. (Gorenstein Hypothesis) Let ']T,, = Homy, (T, A?). Then:

(i) There exists an isomorphism
G=G,:T, 5T,
of free rank one T, -modules.

(ii) Home, (li_r)nr (K, Or)y Op)m, is a free T,-module.

This is, of course, a variant of the condition 6.7.9 of the previous section.
The isomorphism G, induces compatible isomorphisms at finite level K,, as
in Definition 6.7.9, for r > 1; we denote these isomorphisms G, in the following
sections. Recall the set (149), and let

S(K?, 1) = U US(K,, k!, 7);

r>1 gl

these are automorphic representations " of varying level at p and weight but
with A, = A,.

HYPOTHESIS 7.3.3. (Global Multiplicity One) Let 7’ € S(K”, ). Then the
representation 7’ occurs with multiplicity one in the cuspidal spectrum of G.

This is the extension of Hypothesis 6.6.4 to all 7’ € S(K?, ), but it is weaker
because it is refers to the global automorphic representation and not only to
the corresponding character of the global unramified Hecke character. As noted
above, it is implied by [Mok15, KMSW14]. By Theorem 7.1.1 we may identify
T, with T, for 7’ € S(K?, ).

7.3.4. Local representation theory. Henceforth, we abuse notation and write O
for O,. (The ring of integers of K does not appear in the context in which we do
this; so we will only be using O for O, here.) We usually include the subscript
‘’ for clarity.

By hypothesis, Homp (h_r)nr S(K,, O)m,, O) is a free T,-module of finite

rank. We fix a finite, free O-module 7, together with a T, -isomorphism
T, ®o Ix —> Homo(lim $7(K,. O}y, O) = lim HI (K, O).
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By part (ii) of Theorem 7.3.1, tensoring over A, with A,/ gives an
isomorphism

Tk .0 ®0 I —> Homo(S(K,, O, O) = HEZ™ (K., O)s.
Restricting to the A, -isotypical parts of both sides yields isomorphisms
Ip — T olhd ®o I = (Txp c0.x ®0 ] —> HE™ (K, O)lisl,

and the map j ", yields an injection

|

] b)
d,ord b3 b,a-ord b,Ks ~ __b,Kg
HE(K,, O)he] &> 7ot @ ks = 72ks,

where the last isomorphism comes from fixing a basis element f;‘;"rd of the 1-
Pl

dimensional Frac(Q)-space JTZ"""“’. In particular, I, is identified with a free O-
lattice in 77y, (The anti-ordinary subspace e C gy is the tensor product

over w | p of the local anti-ordinary subspaces y """, which will be defined
in Lemma 8.3.6.)
Tensoring with Tgy , o /ker(A;) yields isomorphisms

A

I; — Tgr,o/ker(ry) ®o Iy —> Homo(STU(K,, O)[As], O).

Letting
I, = Hom(iyn O),

we then get an O-module injection
L — SY(K,, O)A] > 7 @mg® =7,

where the last isomorphism comes from fixing a basis f;:d of the one-
dimensional Frac(O)-space n;’fd.

In view of the comment following Hypothesis 7.3.3, the following
consequence of Hypotheses 7.3.2 and 7.3.3 follows from the preceding
discussion and Theorem 7.1.1.

PROPOSITION 7.3.5 (Minimality hypothesis). For every pair (', r'), there is
an isomorphism of Tr 1 o ,-modules

Ty, .00 ® Iy —> Hom(SH(K”), )., O)
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such that the following diagrams commute when r' > r:

Ty 1,02 ® I, — Homo (S%(K?,, O, O)

l l

Tir o100 ® I ——> Homo(S%4(K?, O),, O).

Moreover, the specialization of this isomorphism at the O-valued point A,
(tensoring both sides over ’]I‘Kpl «lon With ’]I‘leqkl,o’ﬂ/ker(k,,) ~ ) gives rise

to a commutative diagram

Ty, 1.0 /Ker(hr) ®0 L ——— Homo (ST(KL), O)m,, O) @1,y o Tt 00 /Ker(r)

1 P K

5 l

O®o Iy —— Homy (I, O)

where the bottom arrow is just the tautological isomorphism I, — Hom([,,

0).

Assuming that Home (li_n)qr So(K}, 0),.>, O) is a free T,»-module of finite
rank and using the isomorphism T, = T, arising from Lemma 6.6.7(ii), we can
similarly fix a T, -module isomorphism

Tx ®o I —> Homo(lim S3(K}, 0),;, O) = lim HZ (K}, O),

P
with corresponding properties. Since 1 — 7, g = g°, maps holomorphic forms
to anti-holomorphic forms, is natural to identify the free O-module I;» with I,.

7.4. Equivariant measures. In this section we consider measures with
values in p-adic modular forms on G;. We fix a prime-to-p level subgroup
K? C Gi(A})andlet K, = I,K{ C G (A). Under the canonical identification
G2(Ay) = G(Ay), let Kb = (K})” C Go(Ay) and K>, = K|, C Gy(Aj). Let
K? = (K] x K5) N G3(A}) and K3, = (K, % K3,) N G3(Ay). For O = O,
as above, we write V = Vodewp(KP () for the corresponding space of ordinary
p-adic cusp forms on G3 with values in O.

REMARK 7.4.1. Although the Eisenstein measure does not generally take values
in the space of cusp forms, even after ordinary projection, we will be localizing
at a non-Eisenstein maximal ideal of the Hecke algebra. Much of the discussion
below applies without change to measures with values in the space of ordinary
p-adic forms.
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Guide to this section. The aim of this section is to explain how to obtain a
p-adic analytic function L from a V-valued measure on the group X, x T
as in 5.2.2, under the Gorenstein and Global Multiplicity One Hypotheses of
the previous section. In the application the factor X, contributes a CM Hecke
character x, which parametrizes the Eisenstein measure, and 7 parametrizes
the weights of a Hida family; by this we mean that the localization T = T,
of the big ordinary Hecke algebra at the maximal ideal corresponding to a
cuspidal holomorphic representation = of G; = G, is a finite flat A-algebra,
where A is the Iwasawa algebra of the torus 7. The function L should be
viewed as an element of the completed tensor product Ay, ® T. However,
because we have not specified canonical local test vectors at ramified places,
our methods only provide a canonical element of Ay, ®T ® Endp(l,). Let
us suppose for the remainder of this paragraph that Endy (/) is a free rank
one module over the coefficient ring O; in other words, that we can ignore
ramified places. We also simplify the situation by assuming that T = A (so
that the Gorenstein Hypothesis is automatic). The result of the construction is
then a measure on X, x T. This is defined by interpolating locally constant
functions on T—functions that are constant modulo the open subgroups 7,
to be introduced below—obtained from the Eisenstein measure, which is
itself a V-valued measure on X,. The fundamental property of the Eisenstein
measure is summarized in Assumption 7.4.4 below: that at every finite level
K, it defines a Hecke-equivariant map from the (O-dual of the holomorphic
forms of fixed weight p to the (O-module of holomorphic forms. (Later the
O-dual of the holomorphic forms will be identified by Serre duality with
an O-lattice in a coherent cohomology space of top degree, and then with
something roughly equivalent to an O-lattice in the space of anti-holomorphic
forms.) As r varies, these maps satisfy the distribution relations, proved
as Lemma 7.4.9, that guarantees that they patch together into a p-adic
measure.

We choose a sequence of congruence subgroups 7 D -+ D T, D T,,; - - - such
that (), 7, = {1}. Recall that A = A, = O[[T]. Let Z, C A be the augmentation
ideal of T,, and let A, = A/Z.. For O as above, let C.(T,0) = C(T/T,,
O) be the (free) O-module of T,-invariant functions on 7. Then there is a
natural identification A, = Home (C, (T, O), O); alternatively, viewing A as the
algebra of distributions on T with coefficients in O, and C(T, ©O) the module
of continuous O-valued functions on 7', the canonical pairing A, ® C(T,
O) — O restricts to a pairing A ® C.(T,O) — O which factors through
a perfect pairing A, ® C,.(T,0) — O.

Letn, : C.(T, ©O) < C, (T, O) be the canonical inclusion. The next lemma
follows from the definitions. Note that VV = V3°rd'cusP(K”, 0) is a Ap-module
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by the action on the first factor. We fix an involution v : T — T and for any
function p € C(T, O) define p¥ = p o v.

LEMMA 7.4.2. Fix a character p : T — O* andlet C.(T,O)-p* C C(T, O)
denote multiples of pv by elements of C,(T, Q). There is an equivalence between

(1) V-valued measures ¢ on T satisfying
o )=p"()- (), feCT O0)teT;
(2) Collections ¢, = (¢,,,) with
$,., € Hom,(C,(T, 0) - p*, V),
satisfying n:(¢,+1,,) = @r.,, where n* is induced by the dual to n,.
The equivalence is such that ¢ (f) = ¢, ,(f - p*) for f € C.(T, O).

We let Z, , C A be the annihilator of C,(T, O) - p¥, and let A, , = A, /Z, .
Thus, Lemma 7.4.2 identifies equivariant measures on 7 with twist p¥ with
collections of linear forms on A, , that are compatible with the natural projection
maps as r varies.

LetV = Home (V, O) and let ¢ be an equivariant measure on 7 with twist
oV as above. We assume ¢ to be the specialization at a character x of X, of
an admissible measure in two variables with shift s2*(x) = (a(x), B(x)) and
twist v as in Section 5.2.2. So ¢ is equivalent to some ¢, , = (¢,.,.,) as in the
preceding lemma (we write ¢, ., to indicate dependence on x).

REMARK 7.4.3. We write

MK] (Kl,r’ wl; R)[®]RMK2(K2,I’7 wZ; R)

for the image of resy in M, (K3, ¥; R), and use the notation [®] more generally
for restrictions of this kind from (classical or p-adic) modular forms on G| x G,
to forms on G3.

For k = p - a(x) sufficiently regular,

Im(d’x,r,p) C S?;qa(x)),v(Kl,m O)[@]S?;g.ﬁ(x)),_v(l{lrs O) (156)

where the notation [®] is as in Remark 7.4.3.
We also have

V = lim Homo (S, (K 1, O)[®ISS, (K»,, 0), O).

r
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In the situation of (156), assuming x = p - a()x) is sufficiently regular, we thus
have

Im(¢,.,) C Homo($2, ) v (K, O), S5 L (Kay, O)).
The following hypothesis expresses a basic property of the Garrett map that is
the basis of the doubling method for studying standard L-functions of classical
groups.

ASSUMPTION 7.4.4.

Im(¢x,r,p) - HomT,_l,.u(X)(Sz);i,(x))’v(Kl,r, O), Sord —V(KZJ’ O) ® x o det).

(p-a(x)),

Recall that T,,., acts on SE):L(X))) _,(K>,,O) via the map in
Lemma 6.6.7(ii). Also bear in mind that ¢, , , designates integration of functions
locally equal to p¥ — not p — against the specialization at x of a two-variable

measure.

REMARK 7.4.5. We sometimes write k = p - «(x) when we want to emphasize
the weight of the specialized Hecke algebra rather than the weight of the
character of T. Here and below the algebra T, = T, () ignores the twist by
x o det at the end. One checks that incorporating the x o det into the subscript of
the second S° replaces () )’ by the B(x) of (156).

Now let 7 be an anti-holomorphic representation of G, of type (k = p -
a(x), K,). Let ¢, .., » denote the composition of ¢, ,, with projection on the
localization at the ideal m,; in the first variable. Bearing in mind our conventions
for the subscripts ,; and ,», it then follows from Assumption 7.4.4 that

Im(¢y.p2) C Homga (8%, (K, O), S

«,V,m =

) o (K2, O) @ x odet). (157)
Now both S'Ij’rﬁ',n (Ki,, O) and S“(’E"i_v,nb(Kz’,, O) are T,-modules, and indeed
the Gorenstein hypothesis guarantees that they are free T,, ,-modules (in the
obvious notation) of the same rank. In the next few paragraphs they are denoted
Sf’"vi,n and Sf’rfvﬂv, to save space, the character (k = p - «(x)) being understood.
Recall that by the discussion in Section 7.3.4 there are T,-module
isomorphisms

r ~ Jord
Tr,/(,ﬂ ® IJT — Sr,VJT

and

A

7 -~ ord
Ter ® I — 529, ..
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(These isomorphisms depended on certain choices, but the final results will not
depend on these).
Thus, Assumption 7.4.4 yields (with k = p - ¢ () as above)

ASSUMPTION 7.4.6.

Im(¢Xar~p’7T) - HomThK.n (5‘}“0[“(;l b S}“Orij b ® X o det)
(Tr,)(,ﬂ ® fﬂ’ Tr,/c,ﬂ & Irrb)

—N> Hom']l‘m (TF.K,TT? ’]TF,K,U) ®(9 EndO (Irr’)-

HomTr.K a(x)

Here we have tensored with x ~! o det in the first line.

In the remainder of this subsection we no longer need to localize at m,,. We
write C, = C, (T, O) and drop the O’s from the notation for modules of ordinary
cusp forms, and ignore the twists by x odet where relevant. The natural inclusion
C, < C,4,, together with the map ¢* : S‘ff,yv — Sfr“} (dual to the tautological
inclusion ¢, : S < S, ) defines a diagram

Qord ord '*‘ Qord ord
Homr, , (€1 ® STy, S V) Homr,,, (C, ® S75 v, S350 —v)

r+1, r+1,

Homy, (C, ® Sfr\‘}, Sy)

Hereid?,, : $7¢ , — 8% , is the identity map and i* is the dual to ¢, (applied
in the contravariant Vanable) composed with ¢, (in the covariant Variable) It
follows from the equivariance hypothesis that the tensor products (C, 1 ® Sord

r+1,v
and the other two) can be taken over A, and then Homy

is relative to the
action of the Hecke algebra on S, |, and §° _,. Then

r+1.k

FACT 7.4.77. Under Assumption 7.4.4 we have that, for all r, the image of ¢,11
under n* @1id}, | lies in Im(c*). More precisely,

(Tf: ® idj+1)(¢r+l,;<) =1Ll d)r,)c o (idC, ® Lj) (]58)

r+1

as maps from C, ® S, |, to S _,,, where idc, is the identity map on C,.

7.4.8.  Serre duality and change of level. We can interpret the map ¢ with
respect to the Serre duality pairing (132) as follows. In this section we let R,
be a finite Z,)-algebra with p-adic completion R, — O,. Identify S, v (K,,
Ry) with an Ry-lattice in H?(x,Sh(V), ®,). Let H>"“(x,Sh(V), w,) be the C-
linear span of S (K., Ry) and let H""(,Sh(V), wP) be the corresponding
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quotient of H!d (k,Sh(V), ®P); then the action of the Hecke algebra identifies
H"*(x.Sh(V), wP) as a direct summand of H{(x,Sh(V),®”) that is in a
perfect pairing with H!O’Ord( k. Sh(V), w,). We can thus identify S',‘(’ré(l( +, Ro) with
an Ry-lattice in H"*(x, Sh(V), ®?) in such a way that
SV (K,, Ro) = H""(x,Sh(V), w?)(Ro)
= {h € B (¢, Sh(V), @?) | (f.h)ex, € Ry Vf € STV (K, Ro)).
(159)

The following statements (Lemma 7.4.9, Proposition 7.4.10, and
Definition 7.4.11) are written in terms of « rather than p - «(x), for simplicity.

LEMMA 7.4.9. With respect to the identification (159), the map
80 (Kpr, Ry) = S(K, Ro)

is given by the trace map:

#(1°/1,)
t(h) = ———— "
( ) #(IP_‘_I/Ir-Fl) yglg(ﬁﬂ y( )

In particular, the trace map t. defines a surjective homomorphism

H "k, Sh(V), 00) (Ro) = H"™(x,Sh(V), 0) (Ro).

r+l
Proof. This is essentially a rewording of Section 6.4. O

Now we complete at m,, but omit the subscript 7 from the notation; so O =
O,.. As in Assumption 7.4.6 we can identify
Homy,, (C, ® $7¢, $,) ~ Homy, (C, ® T, ® Iy, T, ® L)
= Homg, (C, ® Ty, Ty.0) ® Endo ()
~ T,. ® Endo(I).

We are using Proposition 7.3.5 systematically. Be advised that T = T, in the
following Proposition.

PROPOSITION 7.4.10. With respect to the identifications

Homg,,,(C, ® 5%y, S™,) ~ T, ® Endo (L),

r,—
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(158), and the isomorphism G, ']AT,,K = T,. of the Gorenstein
Hypothesis 7.3.2, the measure {¢, .} defines an element

L(¢) €limT,, ® I» ® I, — T®Endo ().
Moreover, if k! is a second sufficiently regular character, then L(¢,) and L(¢p,1)
are identified with respect to the identifications T = T K k.0, T Kr k1.0,
of Theorem 7.1.1 (after localization at w). Thus, the measures {¢,,.} and {¢, .1}
define the same element L(¢p) € T ® Endp(1,»). Conversely, any such L(¢)
defines a measure {¢,. .} for any sufficiently regular k.

Proof. This is a consequence of Lemma 7.4.9 and follows by unwinding the
definitions. O

The above construction adapts easily to accommodate the compact p-adic Lie
group X ,. We have seen that a }V-valued measure on X, x T is the same thing
as a measure on X, with values in V-valued measures on 7'. In particular, one
obtains a V-valued measure on X, x T from a collection, for all characters « of
X p, of V-valued measures ¢, of type o on T satisfying the congruence properties
of Lemma 5.1.3.

In what follows we identify T with the ordinary Hecke algebra for the
group G = G; the same definition holds, with appropriate modifications, when
G == Gz.

DEFINITION 7.4.11. Fix a level r, a character «, and an (O-algebra R. Let X :
T — R be a continuous homomorphism. Say A is classical of level p” and
weight « if it factors through a homomorphism (still denoted) A : T,, — R,
which is of the form X, for some anti-holomorphic automorphic representation
m of type (k, K, ,) with K, = K”I, for some open compact K” C G(A?), as
before.

Let X («x, r, R) denote the set of classical homomorphisms of level p” and
weight « with values in R; let X***(R) = |J,, X (k,r, R). Any 1 € X“**(R) is
called classical (with values in R).

When R = T,,, we let Ay : T, — T,, be the identity homomorphism.
When 7 is a cuspidal anti-holomorphic representation of weight « as above, let
Aantz © Tre = Tyren be Ay followed by localization at my,.

When « is sufficiently regular, the character A, deserves to be called classical
because its composition with any map from T, , to a p-adic field is attached to
a classical modular form of weight «. The relationship between L(¢) and the
elements ¢, , . is given by the following proposition.
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PROPOSITION 7.4.12. Let x be a character of X,. Let ¢ = dp(x,t) be a
measure on X , x T as in Section 5.2.2, with shift sh: sh*(x) = (a(x), B(x)). Let
p be an algebraic character of T, k = p -« (x). Fix a cuspidal anti-holomorphic
representation w of weight k satisfying the hypotheses above. We consider
L(¢,) = fx,, x(x)d¢(x,t), localized at m, as an element of T ® Endg(I;»).
Let L(¢y, k, r) denote the image of L(¢,) in T,, ® Endg(I). Equivalently,

L(,.k.r) =/ XX Do A Cx 1),

XpxT
where integration against Ay, , amounts to the projection
T—>TQ, Ar,K = Tr,K

followed by localization at m,.
Then L(¢y, k, r) corresponds to the element

¢, € Homr, (C, ® 8%, S™, . ® x odet)

under the identifications in Proposition 7.3.5, compatible with the Gorenstein
isomorphism G, (from Proposition 7.4.10).

Proof. This is just a restatement of the definition of the element L(¢) € T ®
Endg(I;») = T, ® Endg(/,») introduced in Proposition 7.4.10. ]

The following is now an elementary consequence of Proposition 7.4.10.
Again, recall that T = T, = T,,_ . We say that an anti-holomorphic cuspidal
representation satisfies Hypotheses 7.3.2 and 7.3.3 if its complex conjugate (or
contragredient) does.

PROPOSITION 7.4.13 (Abstract p-adic L-functions of families). Let ¢ = d¢ (x,
t) be a measure on X , x T such that, for each character x of X ,, pr x(x)do(x,
t) is a V-valued measure ¢, of type x satisfying Assumption 7.4.4. Fix a cuspidal
anti-holomorphic representation w satisfying Hypotheses 7.3.2 and 7.3.3. Then
there is an element L(¢) € Ay, ® T ® Endg(1,>) such that, for every R-valued
character x of X, the image of L(¢) under the map

x ®Id: Ay, ® T ® Endg(I») — T ® Endg(Ir)

given by contraction in the first factor, or equivalently integration against x with
respect to the first variable, is the element L(¢,) of Proposition 7.4.12.
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The following standard fact (see, for example, [Hid88, Lemma 3.3]) shows
that the specializations of Proposition 7.4.12 determine the abstract L-function

L(9):

LEMMA 7.4.14. The V-valued measure ¢ = ¢, of type x and the abstract L-
function L(¢) are completely determined by their integrals against elements of
the sets X (k, r, (’)Cp) for any fixed sufficiently regular k and all r.

We write A o
Endiy(I») = I» ® I,» ~ Hom(I; ® I,», R). (160)
Then for any ¢ ® ¢° € I:, ® IA,,» we have a tautological pairing
L(x, 1,9 ®¢") = [L($y, k,7), 9 @ ¢'lioc € Ty, (161)
where [e, o], is the tautological pairing
Hom(l; ® I;,», R)® IAH ® inb — R.
We reformulate Proposition 7.4.12 in terms of Equation (161).
PROPOSITION 7.4.15. Fix an embedding O, — C extending the inclusion
E(@m) C C, and let R be a p-adic ring containing O, and satisfying the

conditions of Lemma 5.1.3. Let ¢ be an admissible R-measure on X, x T as

in Section 5.2.2. Assume Hypotheses 7.3.2 and 7.3.3. Let ¢ ® ¢’ € I, @ Iy
as above. Then there is a unique element L(¢, ¢ ® ¢") € A X,.R ® T such that,
for any classical x : X, — R* and any A € X(«,r, R) (with k sufficiently
regular), the image of L(¢, ¢ ® ¢°) under the map A X,.R ®T — R induced by
the character x @ A equals A o L(x, .7, k, ¢ ® ¢°).

7.5. Classical pairings in families. The following is essentially obvious.
The notation (-, -),f“ is as in (132).

LEMMA 7.5.1. Let h € S*$(K,, O), ¢ € H"(K,, O)[r], in the notation of
Section 6.6. Then the map

T — O, A — (A(h)’ ¢>K,K,
takes A to Ay (A)(h, @), k.-

Proof. We have
(A(h)7 <.0)K,1<, = (hv AD((p»K,K,. = )\n’(AD)Ulv w)K,K, = )"N(A)(h’ ¢>K,K,‘ O
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Note that & is not assumed to be an eigenform in Lemma 7.5.1. However,
the pairing with an eigenform for A,» factors through the projection of 4 on
the (dual) X,-eigenspace. In general, this projection can only be defined over
(’)[i]. Extending O if necessary to include O, for 7’ € S(K,, «, "), write
h = Zn’ES(Kr,K,n") a, h, where a, € O[i] and K, is in the X, -eigenspace for
T. Then under the hypotheses of the lemma,

{h, @)k, = ax(hx, @) i, - (162)

where of course h, € 7”.
The denominator of a,, is bounded by the congruence ideal C () = C(x”). In
what follows we are making use of Corollary 6.7.10.

LEMMA 7.5.2. Let ¢ € H,fl’)ord(K,, O)[x). Then the linear functional
hi> L,(h) = (h, 9), k,

belongs to S'ffé(Kr, O)[x]. Moreover, the restriction of L, (h) to S, (K,, O)[r]
takes values in the congruence ideal C () = C(n”) C O.

Proof. The claims follow from Lemmas 7.5.1 and 6.7.11, respectively. O

The functional in the last lemma can be rewritten as an integral. Recall that I,

(respectively I,») was identified with an O-lattice in i @ !, (respectively

b4 ﬁ’a'ord®n;’,,m). Recall also that we have dropped the subscript 7 for the moment,

and so we are writing O in place of O,. In order to facilitate comparison of the
p-adic and complex pairings, we let R be a finite local Z,, [, ]-subalgebra of C

that admits an embedding as a dense subring of O, and let IA,,», r and IA,,, r be free
R-modules given with isomorphisms

A

inb,R ®r O — Ip; IAJT,R QO — I,.

The following lemma is then just a restatement of (133).

LEMMA 7.5.3. In the notation of the previous lemma, let ¢ € I:T. If we identify
h as above with an element of H°(B,(V), K;; Ao(G) @ W)X and ¢ with an
element of H'(B,(—V), K;; Ay(G) ® WKD)K’D, as in Equation (114), we can
rewrite

1

Vol(12,)Vol(IY ) Jo)zemnca

Ly(h) = [h(2), p(@]1lIv(g) | dg.

Lemmas 7.5.2 and 7.5.3 have variants incorporating the twist by a Hecke
character yx, as in (4.1.6) and Section 6.7.5; we leave the statements to the reader.
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8. Local theory of ordinary forms

8.0. Parameters. Throughout this section, following the conventions of
Section 4.4.2, let x, x,, m, k, and (7, 5 ) be associated to one another via:
X = || o | - xo is an algebraic Hecke character of XC (where m € Z and
X0.0(z) = z7%%2)770%) for any archimedean place o), x, denotes the component
of x at an archimedean place o, (7, §,) is a tuple of integers as in Inequalities
(95), and « is a highest weight defined in terms of m, ., and (¥ ) as in
Equation (94).

PR

8.1. p-adic and C*-differential operators. Let (k, x) and (¥, 5) be as in
Corollary 4.4.9 and Proposition 4.4.11. The differential operators and restrictions
in Parts (a) and (b) of the following proposition are those in [EFMV1S,
Sections 6-7] (with the choice of a weight « and the differential operator @«
in the notation in [EFM V18] corresponding to the choice of a representation of
highest weight (7, §) in the dth tensor product of the standard representation).
That the image is actually cuspidal follows from the description of the action of
the differential operators on g-expansions.

PROPOSITION 8.1.1. (a) For (7, §) and x as in Section 8.0, and for any prime-
to-p level subgroup K?, there is a differential operator

017, 5) = 0/ (p(. §)) : V,(Gs, K, 0) — V(G4 K", 0)

compatible with change of level subgroup, and with the following property:
For any level K?, for any form f € M,(G4, K?, O), and any ordinary CM
pair (Jy, ho) as in Section 3.2.4, we have the identity

RK,Jé,ho ] res](;.ho 08;] (Ea S)(f) = resp,‘lé,ho 09;{1(29 S) o RK,G,X(f)
in the notation of Proposition 3.2.5.

(b) Let (k, x) be critical as in Corollary 4.4.9. Fix a level subgroup K, C
G4(Ay) and a subgroup K, x K, C G3(Ay) N K4. The composition of
9)‘(" (7, §) with the pullback res; := (yy, o 13)* defines an operator

0k, x) : Vi (G, K, O) = Vi(G1, K[, 0)® Vo (G, Ky, O) ® x odet,

where the tensor product with x o det is defined by analogy with
Proposition 4.4.11.

(c) LetO(k, x)P denote the restriction of 9 (k, x) to V©P(Ga, K}, O), and let
e, denote the ordinary projector of (31) attached to the weight k, as in 6.6.6.
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Then the composition e, 00 (k, x )P coincides with the operator e, 03;’ #,5)
upon pullback to functions on G 4(A) and restriction to G3(A) (with respect
to the maps (28) for G; and G4):

e 00k, )™ = e 08,3 VI™(Gs, KJ, O)
= Sv(K1) ® Se —v(K2) ® x odet.

(d) Under the hypotheses of (a) and (b), there is a differential operator
6™, x) : V, (G4, K?, O) — V (G4, K, O)

whose composition with the pullback res; coincides with the operator
D™\ (k, x) of Proposition 4.4.11, upon pullback to functions on G4(A),
restriction to G3(A), and identification of ordinary modular forms with p-
adic modular forms via (28).

Proof. The operators from Part (a) were constructed in [EFMV18, Theorem
5.1.13]. The comparison at CM points follows similarly to [Kat78, Section
5.1] and is also in [Eis12, Section 10, especially Proposition 10.2]. Part (b)
follows from [EFMV18, Remark 6.2.7] (and was also present in an earlier
form in [Eis16, Definition 12]). Since the image of 6 (k, x )P is contained in
VEsR(Gy, KT, O)® V5™ (G, KI, O)® x odet, part (c) follows from the control
theorem (32).

Finally, part (d) follows from Eischen’s construction as well: it follows (by
induction on the size of k) from the last part of Corollary 4.4.9 that the
operator D™!(k, x) is obtained by pullback of the differential operator attached
to a polynomial P™!(x, x) € ®,P(n),. One lets 6™ («, x) be the differential
operator on p-adic modular forms attached to the same polynomial. O

The following corollary is the p-adic version of the last part of Corollary 4.4.9.

COROLLARY 8.1.2. Under the hypotheses of the previous proposition, for all
k" < k there are differential operators 6 (i, 1) : V, (G4, KP, O) — V(Gy4, K7,
O) such that

Ok, x) = Z res; o8 (k, k1) 0 0™ (k™. x).

kT <ie

PROPOSITION 8.1.3. Let F € H°(Sh(G.), L(x)).
Assume «, (F,,5,),m, X, are all as at the beginning of this section, and
let e, be as above. Recall the holomorphic projection pt™ from Section 4.4.7.
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Then
(e 0Ok, X)) (F) = e, opri® 0 8(F,, 5, )(F). (163)

Proof. By Corollary 8.1.2, the left-hand side equals

Z e, ores; Ok, k") o 0™k, x).

,kt <
By Proposition 3.2.5, it thus suffices to show that, for every ordinary Shimura
datum (Jg, hy) as in the statement of the proposition:
(1) for k¥ < K, e, ores; O(k, k') o 6™ kT, x)(F) = 0 after composition with
reSp,J(;,ho;
(2) e, o res;O(k, k) o O™ (k, x)(F) — e, o pr™ o 8(F,,5,)(F) = 0 after
composition with res,, : .

Part (2) is a consequence of (c) of 8.1.1. We show that the expression in (1) is
arbitrarily divisible by p. More precisely,

LEMMA 8.1.4. Forany k' < k, the ordinary projector e, = lim | UY. converges
absolutely to 0 on S+ (K,; R).

Proof. The point is that, for each w, j, U, ;. = |/</(tw,j)|;1 U.,,;, with ¢’ defined
asin 2.6.11. Thus,

-1 T
Up,K = l_[ |K/ K /(tw,j)lp ' Uw,j,/c"'-
w,j

The condition k7 < « is equivalent to the condition that the p-adic valuation of
[1,,«"~" - «™(t,;) is positive. Thus, U, , has p-adic norm strictly less than 1
on S+ (K,; R), and it follows that ¢, = li_r)nN UI’X,'( actsas O on S+ (K,; R). O

Part (1) above now follows from the fact that the ordinary projector commutes
with the differential operators. O

8.2. Existence of the axiomatic Eisenstein measure. Let xyniary be a unitary
Hecke character. Let x = Xunitary| * |,_C% . So x is a Hecke character of type Aj.
Write x =[], xw». We obtain a p-adically continuous Oc,-valued character X
on X, as follows. Since yx is of type Ao, there are integers k, v, € Z such that
for each element a € *,

1\ (7@)\"
Y@ = [ | xo(@) = H<a<a>> (o(a))

oeX oeX
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witho :=oc.Let X : (K®Z,)* — @: be the p-adically continuous character
such that

)?oo(a) = iIlClp 0 Xoo(a)

forall a € K. So the restriction of yo to (O ® Z,)* is a OF -valued character.
We define

)Z:X,,—>(’)Ep

by X((aw)) = )Zoo((aw)w\p) Hw’(oo Xuw(ay). Define v = (v, )sex-

For eacho € X, letn = a, + b, with a,, b, > 0 be a partition of n, and let
Ay =M1 o+ +No) e ANd by = Ny(5)41.6+- - -+, 0 D partitions of a, and b,
respectively. Let a = (a,),cx and b = (b, ),cx. Let ¥ be a finite-order character
on Ty (Z,). Let « be a dominant character as in Section 2.6.3, and define p and
pY asin (95), (97). We note that p and « contain the same information, relative to
the shift (1, x) which is imposed by the presence of x in the Eisenstein measure.

Let c = ¢ - p¥. We choose f(yx, c) to be a factorizable Siegel-Weil section
meeting the conditions of Definition 5.3.2; the specific local sections will be
as in Sections 4.2.1 (local choices for v ¢ §), 4.2.2 (local choices for v € §),
and 4.3 (local choices for v | p), and 4.5 (local choices for archimedean places).
Note that the choices at p and oo depend on the signature of the unitary group
G . When p is trivial, the Eisenstein series associated to f(x,c) = f(x, ¥) is
holomorphic; in the notation of [Eis15], it is (a normalization of) the algebraic
automorphic form denoted Gy, .y (Which arises over O but can be viewed
over C by extending scalars) in [Eis14, Equation (32)].

REMARK 8.2.1. We use the notation Gy, ...y below in order to cite the
construction in [EFMV18]. However, this notation designates one of the
Eisenstein series introduced above. More precisely, the section f(x, V) is
the Siegel-Weil section associated tO Xunitary> &, V, and ¥ in [Eis14], and
the associated Eisenstein series Ef(, y)(e) is the one denoted Ey (e, x, ¥, ’i)
in [Eis15]. The Eisenstein series Ef(, y)(e) is normalized by a factor D(n, K, b,
p, k) defined in [Eis15, Proposition 13] in order to cancel transcendental factors.
Note that although we do not include (a, b) in the (already long) subscript for
the Eisenstein series, the choice of f(x, ¢) (and hence, the associated Eisenstein
series) depends on the choice of (a, b).

Like in Section4.4.7,letr|, = -+ 214 o 2 Vo410 =0, 816 = - 2 Sp,.0 =
sp,+1,0 = 0 be descending sequences of integers. Let p” be the corresponding
character on the torus Ty, and let

ri,a:ri,a_ri+],aa lzly---sarr; Sj,a:rj,a_rj+],aa ,]Zla-"yba-
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Define pV :=[[, .5 p¢ and ¢, :== Q), .5 p(,,5,), with p(7,, 5, ) defined as in
Equation (100) (and identified with a polynomial function on the tangent space
of the moduli space). So p(¥,, §_) is a homogeneous polynomial of degree d (o)
for some nonnegative integer d (o).

Recall the C* differential operators 5;‘5 (7,5) from Section 4.4.10. These
operators can be realized algebraic geometrically in terms of the Gauss—Manin
connection and Kodaira—Spencer isomorphism, for example as in the main
constructions in [Kat78, Ch. II], [Eis12, Sections 6-9], [Eis16, Section 3],
and [EFMV18, Sections 3-6]. The constructions in those references each
build an algebraic differential operator D (which gets applied to automorphic
forms on G4) by composing the Gauss—Manin connection and Kodaira—Spencer
morphism. The operator (Si (7,5) can be realized algebraic geometrically by
applying the operator D iteratively d times and then projecting onto the highest
weight vector corresponding to the choice of highest weights corresponding to
(x, (7,3)) (after also projecting modulo the anti-holomorphic subspace H%!
of Hj.). Each of those references also describes an analogous construction
over the Igusa tower, but with H®! replaced by the unit root splitting, which
yields a p-adic differential operator that we denote in the present paper by
6«@b The operator 8®*? acts on p-adic automorphic forms (over the
Igusa tower over the ordinary locus of the Shimura variety associated to Gy4)
and outputs p-adic automorphic forms of higher weight. In each case, the
operator is applied to an automorphic form on G4 and raises the weight of
the automorphic form so that the output takes values in the space generated
by the highest weight vector corresponding to the data (x, (7, 5)). It follows
from [Eis12, Section 10] (which extends [Kat78, Lemma 5.1.27] to unitary
groups) that 6®*?(f) and 8¢ (7, 5)(f) (for any algebraic automorphic form
f) agree at ordinary CM points, up to periods. See (163) for a more precise
statement.

From the p-adic g-expansion principle and the description of the g-expansion
coefficients given in [Eis14, Section 3], we obtain the following theorem (similar
to [EFMV18, Theorem 7.2.3]).

THEOREM 8.2.2 (The Eisenstein measure). Recall the notation of Equation (97).

There is a measure Eis, ; (dependent on a and b) on X, x Ty(Z,) that takes
values in the space of p-adic modular forms on G, and that satisfies

~ . ab
/ Xw : pUElsa,b = G(K ¢ )(Gk»U,Xunilaryﬂ/f)'
XpxTy(Zp)

whenever (x,c =y - p¥) € Y.
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REMARK 8.2.3. When a,b, = 0 for all 0 € X' (that is in the definite case), the
measure in Theorem 8.2.2 is the Eisenstein measure from [Eis15, Theorem 20]
and [Eis14, Section 5].

COROLLARY 8.2.4. The measure dEis, ;, defined by
/ XV - p” dEis,; = 1es30““? (G yuay t)-
XpxTy(Zp)
is an axiomatic Eisenstein measure on values in V (K3, R), with shift (1, x).

Proof. We need to compare the expression in Theorem 8.2.2 with the
specifications required in Definition 5.3.2. Bearing in mind the translation
mentioned in Remark 8.2.1, this comes down to comparing the action of
e, o res3 0% with e, o oD™!(k, x). But this follows from Proposition 8.1.3.

O

REMARK 8.2.5. The set Y** for the measure is determined by the conditions
in (110), together with the relationships between x, m, (r;,);, and (s;); given
in Equation (94) and Inequalities (95).

8.3. (Anti-) Ordinary representations and (anti-) ordinary vectors for G.
For this section, let G = G;. For each prime w | p, let G,, = GL,(K,). Recall
that by (9) and (10) there is an identification

G@,) — Q; x [] Gu (164)

weX),

Let B, C GL,(K,) be the (nonstandard) Borel consisting of elements g = (6‘ g)
with A € GL,, (IC,,) upper-triangular and D € GL,, (K,,) lower-triangular. Let
T, C B, be its diagonal subgroup and B* C B, its unipotent radical. Let I C
GL,(0O,) be the subgroup of elements g such that g mod p" = (4 5) with A €
GL,,(0,/p" O,) upper-triangular and D € GL,, (O, /p"O,,) lower-triangular
(this is the mod p” Iwahori subgroup relative to the Borel B,). Let I, , C IBJ be
the subgroup consisting of those g such that A and D are unipotent. Under the
identification (164) the subgroups I, C 1,9 of G(Z,) defined in Section 2.5 are
identified as

R —zy [, ad 1, — Z5 ] L. (165)
wex), wex),
Let 8, : B, — C be the modulus character: if t = diag(¢{, ...,t,) € Ty, then
Bu(t) = 1071ttty T g
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8.3.1. Ordinary representations: local theory. Let m be a cuspidal
holomorphic representation of G(A) of weight type («, K) as in Section 6.5.1
with &k = (k;)oex,, Ko € Z%, assumed to satisfy:

Ko + Koe =2 n, Vo € Xi. (166)

Let kporm = (Knorm,a) with Knorm,o = Ko — bs.

Via the identification (164), the p-constituent 7, of 7 is identified with a
tensor product 7, = u, &, . 5, Tw With 1, a character of Q] and each ,, an
irreducible admissible representation of G,.

Recall that the Hecke operators u,, ; = |Kn0rm(tw,j)|;lUw,j, w € X, and

. K, A P .
1 < j < n, act on the spaces Tyl = JT; ® (®¢¢p 7o)k through an action on
the spaces n]f": U, ; acts on the latter spaces as the usual double coset operator
I,t;f jI,, and, furthermore, the generalized eigenvalues of the u,, ; are p-adically
integral (cf. Section 2.6.9; since m = 1 the subscript i has been dropped from
our notation, following our conventions). In particular, the ordinary projector
e = limyoo([],ex, [T uw, )™ acts on each 7. From the identification

Tor
wes Tw" via the

Ty = tp Qyex, Tw and (165) we find that u,, ; actson ;7 = &)

action of the Hecke operator uS)Lj = |Knorm (tw. )|, USLJ on 7", where US]; acts
as the double coset operator I, .1, ;I »; here, t,, ; € T, is the element defined
in Section 2.6.9. It follows that the generalized eigenvalues of the action of the

Hecke operators u$"; are p-adically integral, and e, = lim,, ([}, ug-)™

w,j
defines a projector on each T

Suppose that 7 is ordinary at p. Recall that this means n;’ # 0ifr > 0and
that, for any such r, there is at least one vector 0 # ¢ € nlﬁ' such that e - ¢ = ¢.
We call such a ¢ an ordinary vector for ,. (But note that this notion depends a
priori on the character «,om,, which in turn depends on « and the signatures (a,,
by )oex, - It turns out that there is at most one «,,m With respect to which a given
7, can be ordinary, but in general the same 7, can appear as local components
for unitary groups with various signatures.) The existence of an ordinary vector is
equivalent to the existence of a¢p € p’ r >> 0, that is a simultaneous eigenvector
for the Hecke operators u,, ; and having the property that u,, ; - ¢ = ¢,, ;¢ with
lcw,j1, = 1. It follows from the identification 7, = , Q). x, T that 7, being
ordinary at p is equivalent to u, being unramified and each m,, being ordinary,
in the sense that there exists ¢,, € n,f,“"’, r > 0, such that e,, - ¢,, = ¢,,; we call
such a ¢, an ordinary vector for w,.. The existence of an ordinary vector for 7w,
is equivalent to:

(a) m,’j“ # 0 forall r > 0;
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(b) foreach r as in (a) there exists 0 # ¢,, € Jr,f,”“ such that ¢,, is a simultaneous

eigenvector for the uG;, 1 < j < n, and having the property that u"; - ¢, =
Cy, jPw With [y, |, = 1.

Note that if ¢, € 7, w € X, are ordinary vectors and p, is unramified, then

¢ = Quez,Puw € 7, is an ordinary vector for 7.

LEMMA 83.2. Let w € X, Suppose m, is an irreducible admissible
representation of G, such that (a) and (b) above hold for a weight « satisfying
inequality (166).

(i) Up to multiplication by a scalar; there is a unique ordinary vector ¢ €

Ly,

" s ¢ is necessarily independent of r > 0.

(ii) There exists a unique character oy, : T,, — C* such that 7, — Indg:’aw
is the unique irreducible subrepresentation and ¢ is identified with the
unique simultaneous szfj—eigenvecton 1 < j < n, with support containing
By, 1, ,, for r > 0. (In particular, c,, ; = |/cm,rm(tw,j)|;'8;‘/20¢w(rw,j).)

Proof. Our proof is inspired in part by the arguments in [Hid98, Sections 5]. Let
V be the space underlying the irreducible admissible representation x,, of G,, =
GL,(K,), and let V5, be the Jacquet module of V with respect to the unipotent
radical B! of the Borel B,,. Let N = (), I,,,; this is just B NGL,(O,). For
eachj=1,...,n,let

dlag(plj,ln_]) ,] <awy

77 | diag(pla,, Loy plica) > au.

We let the double coset U; = N;N acton V¥ =, V/»r in the usual way: if
Nt;N = | |, x; ;N then U; - v = Y, x; ; - v. Then U; acts on the subspace V"
as USL. By the same arguments explained in [Hid98, (5.3)], V" decomposes as

o
VN = VXY @& VN, where the U; act nilpotently on V,}{ and are invertible on V,\.

mnv?

Then, just as in [Hid98], the natural B, -invariant projection V ey Vs, induces
an isomorphism
VN Ve, v 1, (167)

mv
that is equivariant for the action of the U;.
Let ¢ € V" be an ordinary vector for some r: ¢ is an eigenvector for each
uj = |/cn0rm(tj)|;1Uj with eigenvalue c; such that |c;|, = 1. In particular, ¢ €
VN As U; acts on Vg, via 8, (t;)"'1;, it then follows from (167) that there must

be a B,,-quotient
t: Vg, - C)
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withA: T, — B, /B: — Cis acharacter such that A(¢;) = |knom (£;)],6(f;)c;
forall j =1,...,n. Leta = A8~ /% and let I (a) = Indg,f(a) be the unitary
induction of « to a representation of G,,. By [Cas95, Theorem 3.2.4],

Homg, (V, I(@)) — Homy(Vs,C(1), ¢ — (0 p@)(1)),

w

is an isomorphism, from which we conclude that there exists a nonzero G-
homomorphism V < I («), v — f, (which is necessarily an injection since 7,
is irreducible) such that

L) = fi(1). (168)

By the characterization of A, B = |Knorm|;15;1A = |Kmrm|;15;1/2a is a
continuous character 7,, — C* such that each B(¢;) is a p-adic unit. From the
definition of the ¢; it then follows easily that B(¢) is a p-adic unit for all ¢ € T,,.
Let W be the Weyl group of T, in G,,. For x € W, let 8, = |Knorm|;18uj1/2ax,

where o* (1) = a(xtx~!). We claim that the values of B, are all p-adic units if
and only if x = 1. If the values of §, are all p-adic units, then

Be/ B (1) = |knorm (xtx ™17 18, (erx ™t 712

is a p-adic unit for all ¢ € T,. As §,, is the composition of | - |, with an algebraic
character of T, it follows that the above values must all be 1. That is, the
character 0 = |kyom|,8,'/* satisfies 0° = 6. Recall that if « is identified with
a dominant tuple (ko, (K, )sex,) as in (16) then

g i=1
Po=Puw

ay by
1 o,i —bu —Koc,jT0w
Knorm(dlag(th BRI tn)) = l_[ l—[oﬁ(ti)K’ l_[G(taw+j) Koe.jtau
j=1

In particular, letting

m; = Za,p(,:pw (K(r,i - bw) i < Ay
- Zo‘ypazpw (Koc,i - aw) l > Ay,
we have
n
|Knorm(diag(tl’ sy tn))|p = 1_[ |ti |I;71l
i=1
It follows that
. mH—% mauﬂ'w maw+l+% mn-FW 1
O(diag(t), ..., 1)) =1t R . sl P

From the dominance of x and the inequality (166) it follows that

My Z2my 2 - ZMg, =My 2 My 2+ 2 Mg 41,
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and so
n—1 b, —a,
m1+T>--->maw+T>mn
b, —2—a, 1—n
+#>"'>maw+1+ 2 .

That is, 6 is a regular character of T,,, and therefore 6* = 0 if and only if x = 1.
This completes that proof that the values of B, are all p-adic units if and only
x =1

As B, # B for all x # 1, the characters «*, x € W, are all distinct, and hence
the Jacquet module I () g, of I (c) is a semisimple B,,-module and isomorphic
to the direct sum @ _,, C(a*8'/?) (cf. [Hid98, Proposition 5.4]). The inclusion
V — I(a), v — f,, induces a B,-inclusion

Vs, = I(@)s, = P C@s)?). (169)

xeW

It then follows from (167) that V;" is a sum of one-dimensional simultaneous
eigenspaces for the U; that are in one-to-one correspondence with those
characters a*8~'/2, x € W, that appear in Vj via (169); the eigenvalue of
u; = |Kmrm(lj)|;1Uj on the eigenspace corresponding to a*§'/? is B,(z;). As
the values of B, are not all p-adic units if x # 1, it follows that the space of
ordinary vectors in V is one-dimensional; this proves part (i). It further follows
that the ordinary eigenspace must project nontrivially to C(1) = C(a8'/?) via the
composition of (167) with ¢, and that all other eigenspaces map to O under this
composition. As this composition is just v — f,(1) by (168), part (ii) follows
easily. O

COROLLARY 8.3.3. Suppose k satisfies (166) and m, is ordinary. Up to
multiplication by a scalar, there is a unique ordinary vector ¢° € 71;' Sfor

r > 0; ¢° is necessarily independent of r. Furthermore, under the identification
Tp = 1ty Ques, Tus 8™ = @z, $o°, with ¢ as in Lemma 8.3.2.

The following lemma will aid in the computation of certain local zeta integrals
involving ordinary vectors.

LEMMA 8.3.4. Let w, m,, and k be as in Lemma 8.3.2. Let m) be the
contragredient of w,, and (-, -),, : w, x 7w, — C the nondegenerate G ,-invariant
pairing (unique up to scalar multiple).

(i) Let oy, be as in Lemma 8.3.2(ii). Then m, is isomorphic to the unique

7 7 ; Gy 1. Guw_ ,—1 \%
irreducible quotient of Indp" " - Indp" o " — 7.
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(i) Forr > 0, let ¢, . € 7, be the image of the vector in Indg:oz; ! that is
supported on B, 1,. Then c(w,, r) = (¢, Gy )w is nonzero and depends
onlyonr.

(iii) Let 0 # ¢ € wlr withe - ¢ = c(¢p)p2™. Then
(@, by )0 = (@)D, b V-

Proof. Part (i) follows from the identification of Indg:’a; I as the contragredient
of Indgl':aw (cf. [Cas95, Proposition 3.1.2]). The pairing (-, -) : Indgu“jaw X

Indg:’a;l — C corresponding to this identification is just integration over

GL,(0,) C Gy:
(0, @) = / pk)p' (k) dk, ¢ € Indg:’aw, ¢ € Indg:'a;l,
GL”(OUJ)

(cf. [Cas95, Proposition 3.1.3]). For part (ii), let ¢° € Indg;f(xw correspond to

¢ as in Lemma 8.3.2(ii) and let ¢ € Indj"a;! be the function supported on
B, I.. Then

(@0, by ) = / o™ (k) (k) dk.
GL” (Ow)

As B,I, N GL,(O,) = I°, and since for k = tk’ € I’ = T,(O,,)I, we have
(k)Y (k) = ay, (t)oz;l(t) = 1, it then follows that

ey, r) = (@2 P ) = / dk = vol(I%) # 0.

I

0
w

This proves part (ii).
For part (iii), write ¢ as a sum of simultaneous generalized U 1S”Li—eigenvectors:

¢=c@y'+) ¢, e ¢ =0.

i=1

ord

Let ¢ (respectively ¢, ¢;) be the function in Indg:’aw that corresponds to ¢
(respectively ¢°, ¢;) as in Lemma 8.3.2(ii). Then, for r > 0, ¢;| 1o =0, (by the

w

uniqueness property in Lemma 8.3.2(ii)) and so

B, 6) Y = / o) (k) dk = / o)) (k) dk
GL, (Oy) 0

I

r

= C(¢)/ P ), (k) = (@) (@5, by - O
4
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8.3.5. Anti-ordinary representations: local theory. Let w be an anti-
holomorphic representation of G(A) of type (k, K) as in 6.5.1 with « satisfying
the inequality (166). This is the case if and only if 7" is a cuspidal holomorphic
representation of type (k, K) as considered in the preceding section.

For each r > 0 the Hecke operators U, ;= |/<mrm(tw,j)|pU,;’j, w € X, and
1 < j < n, act on the space 7;" = 77 ® (®),, )" through an action
on the space né’: U, ; acts on 7T£’ as the usual double coset operator 1,1, ;1.
Furthermore, the generalized eigenvalues of the u,, ; are p-adically integral. In
particular, the anti-ordinary projector e~ = lim,, oo ([ [, 5, [T, u;’j)’”! acts on
7). From the identification 7, = , &, 5, w (Via the isomorphism (164)) we

find that u,, ; acts on 7 = @, 5, 7. via the action of the Hecke operator

ufb* = |Knorm (. j)l;lUS}j‘*, where US,Lj‘f acts as the double coset operator
Iw,,t,;lj L, ,; here t,,; € T, is the element defined in Section 2.6.9. It follows

that the generalized eigenvalues of the action of the Hecke operators ugb_ are
p-adically integral and e, = lim,, ([ ]_, uS,Lji_)’”’ defines a projector on 7.

We say that  is anti-ordinary at p of level r if n[f* # 0 and there exists
0#£¢ € nlf’ such that e™ - ¢ = ¢. We say that such a ¢ is an anti-ordinary vector
for 7, of level r, with respect to I,. Similarly, defining I” = I, where the latter
is as in Section 6.5.3, we can speak of anti-ordinary vectors for m, of level r,
with respect to I7. Under the identification 7, = ., @), . x, 7w, the existence of
an anti-ordinary vector of level r in 7 is equivalent to u, being unramified and,
for each w € X, there existing 0 # ¢,, € mf}”" # O such thate - ¢, = ¢,,; we
call such a ¢, an anti-ordinary vector for 1, of level r.

LEMMA 8.3.6. Letw € X, and m,, be a constituent of ), as above.

(1) The representation m,, is anti-ordinary of some level r if and only if m. is
ordinary, in which case m, is anti-ordinary of all levels r > 0.

(i) If m, is anti-ordinary of level r, then there exists a unique (up to
IIU,I‘

nonzero scalar multiple) anti-ordinary vector ¢>f:;f’,rd € my" of level r;

it is characterized by (¢*°9, ¢¥°), # 0 and ($*°9, ¢),, = 0 for all

w,r 2w w,r
w,r

1, . . . — . .
¢ € m,"”" belonging to a generalized eigenspace of some uSLj with nonunit
eigenvalue.

Proof. Suppose m,, is anti-ordinary of some level r. Then T # 0 and there
exists a simultaneous eigenvector ﬁj'f’rrd € ma"" for the ugl,‘j?* with p-adic unit
eigenvalues a(j, r). Let (-, -), : m, x 7, — C be the G,-equivariant pairing.

w
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Then we have

a(]’r)< a-ord ) ( GL— a-ord ) :< a-ord uGLA ¢>w (170)

w,r w,r w,r 2 Pw,j

Ly,

for all ¢ € m, . It follows that the action of each uijj on ™™ has an
eigenspace with eigenvalue a(j, r) (which is a p-adic unit). To see that there
exists a simultaneous such eigenspace we use the commutativity of the ugbs:

V, 1y . . . .
Let V;_, C m, " be a maximal subspace that is a simultaneous eigenspace for

ugy, ... ugs_ with respective eigenvaluesa(l,7),...,a(j—1, r) Then by the
commutativity of the uw s, the identity (170) holds for all ¢ € V,_,. In particular,

there is a nonzero (max1mal) subspace of V; C V;_; which is an eigenspace for
GL. with eigenvalue a(j, r). It follows from induction on j that there exists a

nonzero simultaneous u —elgenvector ¢ € 7Tw ", j =1,...,n, with p-adic
unit eigenvalues a(j, r). That is, 7, is ordinary.

Conversely, suppose that 7 is ordinary, and let ¢ € 7 be an ordinary
vector with u - elgenvalue c( J) (which is a p-adic unit). Then for r > 0 we
have

(i), by ™ = (Do uSs - dL ) = (UG~ b ™) (171)

for all ¢ € . It follows from the nondegeneracy of (-, -),, that there exists

a uS“" -eigenvector qur e 7" with eigenvalue c(j). Using (171) and the

w,J

commutativity of the "~ we find, as in the preceding proof of the ordinarity of
7., that there exists a nonzero simultaneous uw j ~-eigenvector ¢ € T j=1,
, n, with p-adic unit eigenvalues c(j). That is, m,, is anti-ordinary of level r

forall r > 0.

Suppose now that 7, is anti-ordinary of level r, and let ¢*°™

IS nw“ " be an anti-

V, 1Ly,
ordinary vector of level r. As shown above, 7,/ is ordlnary and ¢ €y

We note that
jTuv},Iu;’,. — C(p]\ﬂ/,ord @ V] @ .. @ ‘/t

with each V; a simultaneous generalized u$ —elgenspace with at least one of the
(generalized) eigenvalues not a p-adic un1t th1s follows from the uniqueness of
the ordinary vector (see Lemma 8.3.2(i)). Since (170) holds for all ¢ € V; it
follows that (¢, V;),, = 0. This proves that $*°® € 7, is characterized (up

w,r

to nonzero scalar multiple) as stated in part (ii). T he uniqueness also follows. [

Using this we can deduce an analogue of Lemma 8.3.2(ii):

LEMMA 8.3.7. Letw € X, and m,, be a constituent of 7, as above. Suppose m,,
is anti-ordinary. Then there exists a unique character B,, : T,, — C* such that
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Indg:)’ Bu — m,, is the unique irreducible quotient and the anti-ordinary vector

ij'f’rrd € of level r is (up to nonzero scalar multiple) the image of the vector
in Indg"”!’ Buw with support B, 1, ,. In particular, the $=°, r > 0, can be chosen

w,r
to satisfy
Y. meT =i >

yelu, /U0 Nl

Proof. Since m, is anti-ordinary, it follows from Lemma 8.3.6(i) that =,/
is ordinary. Let «, be the unique character of B, associated with
as in Lemma 8.3.2(ii). Let B, = «,'. As m) is the unique irreducible
subrepresentation of Indg:’ozw, 7, is the unique irreducible quotient of Indg;j’ Bu-
of the vector in Indg:' B, that is supported on B, 1, , satisfies the conditions that
characterize q&;‘f’fd in Lemma 8.3.6(ii). The uniqueness of 8, easily follows from
the uniqueness of «,, and Lemma 8.3.4. O

COROLLARY 8.3.8. Suppose «k satisfies Inequality (166). Then m, is anti-
ordinary if and only if nz is ordinary, and up to multiplication by a scalar,

there is a unique anti-ordinary vector ¢+ € w,"" of level r for each r >> 0.

Furthermore, under the identification w, = i, Qe 5, Tu, =, s, ord
with ¢*°9 as in Lemma 8.3.7.

w,r

REMARK 8.3.9. The desired relation between the ¢l";;f’rrd for varying r can be
made explicit by normalizing ¢*°¢ to be the image of the vector in Indg:’ﬁw

w,r

with support B,,I,, , and value at 1 equal to 1.

REMARK 8.3.10. The description of the anti-ordinary vector gbf};f’rrd € m,
provided by Lemma 8.4.2 shows that for r sufficiently large, ¢,, = ¢ € ,
satisfies the conditions (64) and (70) with R,, = B,, (and n;,, = 1 for all i). In
particular, ¢ € 7, is a suitable ‘test vector’ for the calculations in 4.3.6.
8.3.11. The Newton polygon. Let m be a holomorphic or anti-holomorphic
cuspidal automorphic representation of G(A), and let 7, = u, @, x, Tw be
the identification corresponding to (164). We assume that

each m,, is an irreducible subquotient of Indg: Bu (172)

for some character 8, : T — C*. We view B,, as n-tuple 8, = (Bu.1,---,
Buw.n) of characters of K, defined by B, (diag(t, ..., t,)) = ]_[l’.l:l Bu.i(t;); the
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characters 8, ; are uniquely determined up to order. We define the total Hecke
polynomial of w at w to be

Hy(T) =[]0 = ewi (@) T — ) (@)T). (173)
i=1

The Newton polygon Newt(rwr, w) of w at w is the Newton polygon of H, (7).
Note that
Newt(rr, w) = Newt(’, w).

Let X, = {0 € Xk | p, = pu}. Let

Ty, = ® Ty = ® Dc(fa)

ceXy, oeXy,

in the notation of (90). Define the Hodge polygon Hodge(r, w) to be the polygon
in the right half-plane with vertices (i, ) s, Dio), where (p; ., qi,) are the
pairs introduced in Section 4.4.12 for D, (7, ).

PROPOSITION 8.3.12. Suppose m is (anti-)holomorphic and (anti-)ordinary.
Then Newt(r,,) and Hodge(r,,) meet at the midpoint (n, )" _ 5, Pio)-

In motivic terms, this says that the motive obtained by restriction of scalars to
Q of the motive attached to IT satisfies the Panchishkin condition, see [Pan94].
The proof is an elementary calculation and is omitted; it will not be used in what
follows. Details will be provided in a future article, when the results obtained
here are related to standard conjectures on p-adic L-functions.

8.4. (Anti-) Ordinary representations and (anti-) ordinary vectors for G,.
If the group G, in Section 8.3 is replaced with G, then the analysis of ordinary
and anti-ordinary representations and vectors carries over with only a few
changes. The most significant of these is that under the identification (164)
the Borel B, and the groups Ig_r and I, all get replaced by their transposes
‘B, T° ., and 'I,, ,, respectively (more precisely, B, should be replaced by the

w,r?
opposite parabolic, which is just the transpose in this case, and similarly for Ig.r
and 1, ,). However, in order to compare with the test vectors in Section 4.3.3
and subsequent calculations, we want vectors induced from B, and not ‘B, =
B:P. These are obtained by composing with the standard intertwining operators
between Indgfﬁ, and Indg:’.

Suppose 7 is a cuspidal holomorphic representation of G;(A) of weight
type (k, K) as in Section 8.3.1. Let 7" be as in Section 6.5.3. In particular,
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7" =7V ® |[v]|“®“. As a representation of G,(A), 7" is cuspidal holomorphic
of weight type («°, K”). (However, as a representation of G;(A) it is anti-
holomorphic of this weight type!)

8.4.1. Ordinary representations Il: local theory. Suppose that 7 is ordinary at
p. Then 7° is also ordinary at p (but with all the changes of conventions that
come from replacing G with G»; in particular, the role of the US: operator is

oJ
now played by UE;SL =1, ,t;", ;). Let

w,j

b _ b b
”p_up®”w

wex),

be the decomposition of n; with respect to the identification (164). Then 7} =
m, and ), = po ]
We have the following analogues of Lemma 8.3.2 and Corollary 8.3.3.

LEMMA 8.4.2. Let w € X,,. Let r be so large that o £ 0 (equiv, " # 0).

(i) Up to multiplication by a scalar, there is a unique ordinary vector ¢ €

0, Tw,r . b ord
Tlw » Py

is necessarily independent of r > 0.

(ii) There exists a unique character o, : T,, — C* such that Indg‘:’(xfu —» na is
the unique irreducible quotient and ¢ is identified with the image of the

simultaneous UE;Y(]‘TL—eigenvector, 1 < j < n, with support B,'1,,,, forr > 0.

b,GL

. . . b . .
(In particular, the u,, ;" -eigenvalue is c,, ; = cwij.) Furthermore, if a,, is the

character as in Lemma 8.3.2(ii), then az) =a, .

Proof. The map Indg:‘oz — Indg:ﬁa’l, d(g) > ¢V (g) = ¢('g™") realizes ) =
m" as the image of 7,, and hence a subrepresentation of Indg;f‘ a,'. As ¢V € )
is ordinary if and only if ¢ € 7, is, part (i) follows immediately, and ¢

(¢°)Y. Part (ii) follows from noting that ” is then the image of the standard

w
intertwining operator Indg:’a;‘ — Indgé’,’;a;'. The determination of the support

. . G 1 - .
of the eigenvector in Ind;" ;" is an easy computation. O

COROLLARY 8.4.3. Up to multiplication by a scalar, there is a unique
ordinary vector " € 70" for r > 0; ¢"* is necessarily independent of r.
Furthermore, under the identification ) = i\, @,,cx, T, " = Q ez, $0™,
with ¢ as in Lemma 8.4.2.
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8.4.4. Anti-ordinary representations Il: local theory. Suppose that  is anti-
ordinary at p. Then 7" is also anti-ordinary at p (but again with all the changes
of conventions that come from replacing G; with G,; in particular, the role of
the Ulf'ql;-’f operator is now played by U:J’S'L’* =Ty ity ;Tw ).

As in the ordinary case, we have the following analogues of Lemma 8.3.7 and
Corollary 8.3.8:

LEMMA 8.4.5. Let w € X,. Suppose t) is anti-ordinary with respect to I, ,
(equivalently, ,, is anti-ordinary with respect to the 1, ,). There exists a unique
character B8’ : T,, — C* such that ©° < Indgu"}’ B., is the unique irreducible

b,a-ord batlw,r

subrepresentation and the anti-ordinary vector ¢, € my of level r is

(up to nonzero scalar multiple) the unique simultaneous UZ,‘SL’f-eigenvector in
Indgz B. with support containing B, ,. In particular, the ¢;?;°rd, r > 0, can
be chosen to satisfy

b b,a-ord b,a-ord ’
Yoo mpe =g K>

Y€l /(10 ,(Tur)
Furthermore, if B, is as in Lemma 8.3.7(ii), then B, = B,".

Proof. Just as for the ordinary case in the proof of Lemma 8.3.7, ¢Z)*f‘r‘°rd =
(¢*°)Y is anti-ordinary. Furthermore, it is identified (up to nonzero scalar

w,r

multiple) with the image under the Indgs”pa; - Indg:'a; ! of the function
¢, € Ind 5o, thatis supported on B2, , and takes the value 1 on 1. If ¢2;%° is

normalized to be equal to the image of ¢/, then ¢,;%°" satisfies the trace relation
(since ¢, does). O

COROLLARY 8.4.6. Let I = IT. There is a unique anti-ordinary vector ¢)*°" €

b
my" of level r for each r >> 0. Furthermore, under the identification 7, =

b b b,a-ord __ b,a-ord : b,a-ord :
w, ®w€2p o, ¢ = ®w€2p ¢, with ¢ as in Lemma 8.4.5.

REMARK 8.4.7. Under the normalization in the proof of Lemma 8.4.5, ¢"#° ig

w,r

identified with a function in Ind3" B, whose value on 1 is Vol(7 ).

b
w

REMARK 8.4.8. The description of the anti-ordinary vector ¢,*"¢ e
provided by Lemma 8.4.2 shows that for  sufficiently large, ¢, = ¢4 € )

w,r

satisfies the conditions (68) with R,, = B,, (and n;,, = 1 for all i). In particular,
¢y, € m, is also a suitable ‘test vector” for the calculations in 4.3.6.
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The next lemma will be a crucial ingredient in our interpretation of the our
local zeta integral formulas. Recall that (., -),, is the canonical pairing on 77, X 77,
(using 7° = 7V).

We continue with the hypotheses of Lemma 8.4.5, namely that 7’ is anti-
ordinary with respect to I,,, and, equivalently, m,, is anti-ordinary with respect
to the 1,, .. Note that this implies that m,, = (715))v is ordinary with respect to the

Borel ‘B, and ), = 7./ is ordinary with respect to the Borel B,,. We will write
bord & e and ¢7‘f € "™ for these ordinary vectors: the first is the vector

TTw

as in Lemma 8.4.2 but with 7} replaced with (77))" = nw, and the second is the

vector as in Lemma 8.3.2 but with m,, replaced with 7} = 7. We assume that
¢, takes the value 1 at 1 and that qb"‘d takes the value Vol(Ig 19 ) (which is

1ndependent of r) at 1. We assume that ‘the anti- ordinary vectors are normalized
as in Remarks 8.3.9 and 8.4.7.

LEMMA 8.4.9. With the preceding conventions,

< a-ord ord>

w,r

( a-ord baord)w <¢b nrd’ baord)w

w,r

Vol(19, NI0,) —  Vol(19,) Vol(I2,)

In particular, the left-hand side is independent of r.

Proof. We can identify (-, -),, with the pairing induced by Indgi‘j(ﬂw) X
Indj"(B,)~" given by (¢, ¢") Jov, 0, ()¢’ (k) dk. The lemma is then
a straightforward calculation: with this normalization of the pairing, each ratio
equals Vol(1° 10 ) (which is independent of r). O

w,r - w,r

8.5. Global consequences of the local theory. Let m be an anti-ordinary
cuspidal anti-holomorphic representation & of G, of weight type («, K,), K, =
K?I.. Let " be as in Section 6.5.3. Viewed as a representation of G,, 7° is
also an anti-ordinary cuspidal anti-holomorphic representation of weight type
(«", K?), K> = (K?)"1,. But viewed as a representation of G, 7" is an ordinary
holomorphic representation.

Suppose 7 satisfies the Gorenstein, Minimality, and Global Multiplicity One
Hypotheses of Section 7.1. Let S be the set of finite primes, not dividing p, at
which K? is not hyperspecial maximal. We summarize the implications of the
local theory for the identification of automorphic forms in 7. Let I, and I be
as in Section 7.3.4. We say that the anti-holomorphic cuspidal representation 7’
of G, is in the family determined by m if there is a nontrivial character A, of
the Hecke algebra T = T, defining the action of the unramified Hecke operators
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on 7’. Any such 7’ is assumed to be given with a factorization (4). The factors
7., for w | p, are all (tempered) subquotients of principal series representations.

In what follows, the Borel subalgebras b, are chosen at archimedean places o
as in Section 4.4.1. The Minimality Hypothesis allows us to choose vg uniformly
for 7’ in the following proposition.

PROPOSITION 8.5.1. Fix an element vy € fn. Let ' be any anti-holomorphic
representation, of type (', K,/), in the family determined by w. Let ¢, _ denote
a lowest weight vector in the anti-holomorphic subspace of w/_, as in (50). For
a finite prime v ¢ S U X, let ¢, be a fixed generator of the spherical subspace
of w! and let ¢ be the dual generator of the spherical subspace of w!"’. Assume
Kk satisfies (160). Then:

(1) For r’" > O, there is, up to scalar multiple, a unique anti-ordinary anti-
holomorphic vector ¢, (vs, ') € (') with factorization (4) given by

faca (@5, 1) =00 ® Q) ¢,® Q)¢5 ®

vgSUX, w|p

(2) As r' varies, the (p’/(vs, ") € ' can be chosen so that, if r"” > r’' > 0, then

# I0 I, , /
#((I,,;I)) Z y-¢ (vs, ) = Z y-¢" (vs, ") = ¢" (vs, ).

vel /Ly yel /U%NL)

Proof. This follows directly from the results in the previous sections, in
particular Lemmas 8.3.7 and 8.3.2. O

REMARK 8.5.2. To ensure property (2) we adopt the normalization for ¢} ord
described in Remark 8.3.9.

Similarly, from the results in Section 8.4 we deduce that after fixing a vg €
I, = f and letting @y .— denote a lowest weight vector in the anti-holomorphic
subspace of ()%, there is, up to scalar multiple, a unique anti-ordinary
anti-holomorphic vector ¢, (v, (1)") € (77’)*"'([:’ satisfying the analogues of
properties (1) and (2).

For the most general statement, we introduce a twisting character x as in
(4.1.6) and Section 6.7.5. In the following Lemma, the module Hlﬁ,’ord(K f,, vl
R), and the period Q[7’, x] are as defined in Section 6.7.
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LEMMA 8.5.3. Let x be a Hecke character of type Agy. The ratio

(@ (vs, ), 00 (Vg () )y
Vol(I% , N1I°_,)

is independent of r'. If ¢.(vs,w') € HYYK,, ', R) and ¢.(vy, ') €
Hlj;‘”d(Kf,, V' ', R),, then its value is in R - Q[n', x], and for appropriate
choices of ¢, (vs, ') and (p,/(vg, 7') it is a unit multiple of Q[7’, x 1.

Proof. The independence of r’ is a simple consequence of ¢, (vs, 7") and
garr(v';, 7')" being anti-ordinary vectors and Lemma 8.4.9. The remaining claims
of the lemma are consequences of the definition of Q[x’, x]. ]

9. Construction of p-adic L-functions

Review of notation. We recall the notation from the previous sections, because
some of it is admittedly counterintuitive. Our basic Shimura varieties are denoted
Sh(V) (attached to G,) and Sh(—V) (attached to G,, which is isomorphic to
G,). Classical points of our Hida families correspond to cuspidal automorphic
representations denoted 7 and 7°, for Sh(V) and Sh(—V), respectively. With
our conventions, 7 is an anti-holomorphic automorphic representation of Gy,
and therefore with respect to the isomorphism G, —> G is a holomorphic
automorphic representation of G,. Correspondingly, 7”, which can be identified
with the complex conjugate of m, is a holomorphic representation of G, and
therefore gives rise to a holomorphic modular form—of weight «, in practice—
on Sh(V); but " is anti-holomorphic on G,. The input of the doubling integral
is an anti-holomorphic vector on G3 which comes from a vector w € 7 ® 7°,
that will be identified shortly; this is paired with the Eisenstein measure, which
takes values in the ring of p-adic modular forms on G4 and which specializes
to classical forms of weight ¥ ® k" on G3;. We always assume that 7 and 7"
are anti-ordinary at all primes dividing p; in particular, the vector w has local
components at p that are chosen to be anti-ordinary.

Since one is in the habit of thinking of Hida theory as a theory of families of
holomorphic and ordinary forms, the following lemma may be welcome; in any
case, it is implicit in the assumption that both 7w and 7" are anti-ordinary.

LEMMA 9.0.1. Suppose w is an anti-ordinary and anti-holomorphic represen-
tation of G,. Then the p-adic component 1, of 7 is also ordinary.

Proof. The property of being ordinary is preserved under complex conjugation,
and by twist by a power of the similitude character. On the other hand, duality
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exchanges ordinary with anti-ordinary representations, by Lemma 8.3.6. Since
m is essentially unitary, it follows that it is both ordinary and anti-ordinary. [J

More precisely still, the anti-ordinary subspace (or submodule) of 7 ® 7’ is
denoted I, ® I,». However, it is best to view I, ® I,» as a trace compatible system

e S(K,, R)[7]® S°rd (KL BT S (we) = w,, (174)

with notation as in Lemma 7.4.9. Thus, in what follows, ¢ ® ¢° € 7 ® 7°, viewed
as an anti-holomorphic form of level K, x K on Sh(V) x Sh(—V), is taken to
belong to I:, ® I:,b, which we now identify (with respect to the factorization (47))
with the subspace

® ¢aord®¢baord]®®[¢/(g ®(pK _]®T[Sp ®7T;pK Crm ®7Tb- (175)

w|p oloo

In other words, these test vectors have local components as in (48), (49), and
(50). (See also Section 8.5 for how we identify anti-holomorphic, anti-ordinary
cusp forms with elements of f,, ® IA,,».) Moreover, we take our vector ¢ ® ¢” to
be integral over O = O,. By our choice in (175), this is then the anti-ordinary
vector w = w, € 7 ® 7w’ to which we referred above.

Note that the choice of ¢ ® ¢°, and therefore of w,, depends on the level K, ;
however, the corresponding system {w, } satisfies the trace compatibility relation
(174) by Lemmas 8.3.7 and 8.4.5 and Proposition 8.5.1. In particular, the value
of the (normalized) pairing with the Eisenstein measure is independent of this
choice, and we can specifically take r = d > 2t as in (60), and as required for
the local calculation at primes dividing p.

9.1. Pairings of axiomatic Eisenstein measures with Hida families. We
now apply the considerations of Section 7.5 to the integral over G;. Given a fixed
Hecke character x, we let the parameters «, p, p” determine one another as in
(95), (97). Let ¢, be as in Statement 2 of Lemma 7.4.2, a measure on 1y (Z,)
of type x for some p-adic Hecke character x of X,. Choose & € C,.(Ty(Z,),
R)p* C C,(Tu(Z,), O)p so that (cf. (156))

¢rp(5) € STV(K,, R) ® SX*_ (K}, R) ® x odet. (176)
For o ® ¢° € [I:, ® fﬂ»] C 7 @ m” we define (in the obvious notation)

L(ﬂ@(p’ (¢r,p) (E)
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using the normalized canonical pairing (135) of SV, (K,, R) ® S;’f‘fiv(K ""R)®
x o det with

HE™ (K, BT @ HLS (K], B 1@ x ' o det = [, @ L»1® x ' o det
177)
applied to ¢, ,(Z) asin (176) and ¢ ® ¢” ® x ' o det as in (177) (the characters
x and x ! cancel in the obvious way).
We apply this to the measure Eis, , , attached to

E (x, &) dEis

X, x Ty (Zp)

by Lemma 7.4.2, with dEis an axiomatic Eisenstein measure as in Section 8.2.
First, we need to show that the discussion in Section 7.5 applies to this situation.

9.1.1. Equivariance of the Garrett map. If A : Tx g — C is a character, let
A(T) = A(T"), where " is the involution defined in Lemma 6.6.1(ii).

LEMMA 9.1.2. Let w be a cuspidal automorphic representation of G of type
(k, K). Then

dr = A0,

Proof. At unramified places the identity follows from (148). By
Hypothesis 6.6.4 and strong multiplicity one, applied to the base change
to GL(n)k, this in turn implies that the local components of 7 and 7° are
isomorphic at all places split in JC//CT. In particular, we have this isomorphism
at places dividing p; then the identity is a consequence of the uniqueness of
the ordinary and anti-ordinary eigenspaces and the definition of the involution
. O

Let 7 be cuspidal of type («x, K), and let ¢ € X be an anti-holomorphic
vector. We pick a Hecke character x as in Section 4.1.2. In Section 4.1.4 we
defined the zeta integral

I(p, ¢, f.5) = / E;(s, (g1, 82))x ' (det g2)9(g1)¢'(82) d (g1, &2)-
Z3(A)G3(Q\G3(A)

where ¢’ € w and E; (s, g1, 82) is an Eisenstein series depending on a section f €
I(x,s). We specialize s to a point m where E;(s, ®) is nearly holomorphic, in
other words where the archimedean component f,, of f satisfies the hypotheses
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of Definition 5.3.2. We consider the Garrett map

G(f,9)(82) = 1(p, f,m)(g2)

= x ' (detgy) Er(m, (g1, &))e(g) dgi.  (178)
Z1(A)G1(Q\G1(A)

When f is clear from context, we set G(¢) := G(f, ¢). One of the main
observations of [Gar84, GPSR87] is that if ¢ € 7 then I (¢, ¢’, f, s) = 0 unless
¢’ € Y, in other words that G(¢) € Hom(z", C) ~ 7:

THEOREM 9.1.3. If¢ € m then G(p) € 7.

The forms ¢ and G(¢) are on the same group GU(V) = GU(—V) but on
different Shimura varieties. The restriction of E;(im, e) is a holomorphic form
on Sh(V, —V), which means it pairs with an anti-holomorphic form on Sh(V')
to yield a holomorphic form on Sh(—V). In terms of parameters, this becomes

COROLLARY 9.1.4. The Garrett map defines a homomorphism

I(x;,m) — Homr, (H(xSh(V), @), H’(xSh(=V), ),
— Homg, , (H!(Shx (V), ) ® L(—k)), H(xSh(=V), ®)),

where the Hecke algebras act through the isomorphism in Section 6.6.
Equivalently, (F")™' o G (e, ®) defines a homomorphism

I(xs,m) — Homr,, ,(H'(xSh(V), )", H (xSh(V), @,1)).

The factor L(—«) was reinserted in the second line in order to respect
the Hecke algebra action. The action of Tk, on L(—«) factors through the
similitude map.

LEMMA 9.1.5. Let dEis be an axiomatic FEisenstein measure as in
Definition 5.3.2. Then dEis satisfies the equivariance property of
Assumption 7.4.4.

Proof. This corresponds to the equivariance property of the Garrett map stated
in Corollary 9.1.4. O

9.1.6. Fairings, continued. Thanks to Lemma 9.1.5, we can proceed as in
Section 7.5. Henceforward we fix an anti-ordinary representation 7 @ 7" as at the
beginning of Section 9, and we denote by 7’ the elements of S(K,1, k!, ), as
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r! and «! vary. In order to guarantee that our global pairings are compatible
with the local calculations in Section 4, especially the local calculations at
primes dividing p, we choose test vectors ¢ € I, and A= I,» that are
anti-holomorphic, anti-ordinary, and integral over O, as described following
Lemma 9.0.1. Proposition 7.3.5 allows us to identify the space I ® I,,b with
the corresponding anti-holomorphic, anti-ordinary subspace of 7’ ® 7" for
any 7’ as above. We do so without further comment. The image of ¢ ® ¢°
under this identification is denoted ¢’ ® ¢"> when we need to indicate that
the homomorphism L, is realized by the character A, € X(x',r', R)
attached to 7’ (see Proposition 7.4.15). Equivalently, we may identify ¢ with
the element 1 ® ¢’ of the free Tgr 1.0 x-module Tyr 1 0, ® I, and ¢’ with its
specialization at the character )»nrr. '
Substituting ¥ p¥ for Z in the above discussion, with v € C.(Ty(Z,), R) for
some R C O and p as above, we find that, for any 7’ € S(K,1, k', ), as r! and
k! vary, we have

Lygy» < / (X, ¥p") dEiS)
XpxTu(Zp)
= D(X) - Lygy (tess D(k, m, xo) E, ., (m)). (179)

Xo,¥p?

PROPOSITION 9.1.7. Assume m_satisfies Hypotheses 7.3.2 and 7.3.3. Let ¢ and
¢’ be respectlvely elements of Iy and Iy. Let 7' € S (K1, k!, ), for some r!
and k', and let ¢' @ ¢° be the corresponding element of m' ® ", Suppose
(x, ¥p?) € Y,?,l“‘“, withyr € C,(Tu(Z,), R) with x = || o ||"" xu, m = n. Then we
have the equality

Loy ( / X, VoY) dEis)
XpxTy(Zp)

=D(x) - 1(¢', ¢"", D(kc, m, x0) ™ (Xus ¥p"), m).

Vol (12, )Vol(I°_,)

Proof. Abbreviate [G3] = G3(Q)Z(R)\G3(A), dgi = x(det(g)) 'dg,. By
doubling the formula in Lemma 7.5.3—in other words, by applying it to the
group G;—we obtain

Lygyo(ress D(k, m, XO)E}}?I)E),wpU)(m))

1
D(K’ n, XO)EhO]O v
VOI(IOV)VOI( _v) Jicsl I (xXo:¥o¥)

x (g1, 82), m)@ (819" (g2) Iv(g1)*“ | dg1 dg¥.
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Comparing this with Equation (179) and the definition of the zeta integral, we
obtain the equality. O

In view of our choices of local vectors in (175), Corollary 9.1.8 below is
then a consequence of the local computations summarized in Proposition 4.6.1,
and of the axiomatic properties of the Eisenstein measure summarized in
Definition 5.3.2 and Corollary 8.2.4.

COROLLARY 9.1.8. Under the hypotheses of Proposition 9.1.7, suppose ¢ ® ¢"
is an element of the space defined in (175), and in particular ¢ and ¢" admit the
corresponding factorizations at places dividing p and oo. Let the parameters «,
0, p* determine one another as in Inequalities (95) and Equations (97). Then we
have the equality

Lysy: ( / (. ¥p) dEis) = DGO ] 1w, 27 fom)
XpxTy(Z,) )
= [VOI(IrOv)VOl(IrOfv)]il ((,0/, (p;b>x

1 /
I, (k) Lo (X p“)IsLS<m + EE Xu)

where the factors are defined as in Proposition 4.6.1.

9.2. Statement of the main theorem. We reinterpret the identity in
Corollary 9.1.8 in the language of Proposition 7.4.15.

COROLLARY 9.2.1. Under the hypotheses of Corollary 9.1.8, there is a unique
element L(Eis, p®¢") € Ax, r & T such that, for any classical x : X, - R~
and any w' € S(K,1, k', ) for some r', the image of L(Eis, ¢ @ ¢°) under the
map Ax, r ®T — R induced by the character y @ A, equals

[VOI(Z3y )VOI(L _ )1 H@, @)y - I, (xs kD Lo (s P ISLE (m 4 5, 7T, ).

Here ), is the character of T defined in Section 6.6.8, and the local factors are
defined as in Proposition 4.6.1.

In the language of Corollary 9.2.1 this admits the following reformulation. The
statement is in terms of the highest weight « of the (holomorphic) representation
dual to w and a Hecke character yx. Let the algebraic characters «, p, p"
determine one another, relative to a given x, as in Inequalities (95) and
Equation (97).
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MAIN THEOREM 9.2.2. Let w be a cuspidal anti-holomorphic automorphic
representation of G| which is ordinary of type (k, K), and let T = T, be the
correspondmg connected component of the ordinary Hecke algebra. Let ¢ and
@" be respectively elements of R-bases of I and Iﬂb Assume 1 satisfies the
following Hypotheses:

(1) Hypothesis 7.3.2 (the Gorenstein Hypothesis)
(2) Hypothesis 7.3.3 (the Global Multiplicity One Hypothesis)
(3) Proposition—Hypothesis 7.3.5 (the Minimality Hypothesis).

There is a unique element
L(Eis,o®¢") € Ax, x®T

with the following property. For any classical x = | e ||"x, : X, — R*, and
forany n' € S(K,1, k', ) for some r', the image of L(Eis, ¢ ® ¢") under the
map Ax, r ®T — R induced by the character x ® A, equals

Ls(m + %7 Tr/v XL{)
P .

' X

@', x) - 2ury (@, ") (X, k) IsL,(m, ord, 7', x,)

Here A, is the character of T defined in Section 6.6.8 and

(0, 0))«
Vol(I , NIY _,) - Ol x]

2wy (0, ¢") = and Py, = Q'

Finally, the factor 2, (¢, ¢") is independent of r' and p-integral, and is a p-
unit for appropriate choice of ¢ and ¢".

Proof. This follows from Corollary 9.2.1, after we write Q[n’', x] = c(x/,
X)Ox y, as in Lemma 6.7.7. We have used the expression for the local zeta

integral =[], I, given by the formula in Remark 4.6.2. In particular, the
Vol(I ) and Vol(I ) terms cancel, leaving the factor Vol(I N Irolﬁv)*l.
The ﬁnal claim follows from Lemma 8.5.3. O

9.3. Comments on the main theorem. Even in the setting of ordinary
families of p-adic modular forms on unitary Shimura varieties, this should not
be considered the definitive construction of p-adic L-functions. We list some
aspects that call for refinement.
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REMARK 9.3.1 (The Gorenstein hypothesis). It is often possible to verify the
Gorenstein hypothesis when the residual Galois representation attached to 7 has
sufficiently general image, using the Taylor—Wiles method. See [Pil11, Har13b]
for examples. On the other hand, it is certainly not valid in complete generality.
Since the Gorenstein condition is an open one, one can obtain a more general
statement by replacing Ax, r ®T by the fraction fields of its irreducible
components. The method of this paper then provides p-adic meromorphic
functions on each such components, which specialize at classical points as
indicated in the Main Theorem.

REMARK 9.3.2 (The multiplicity one hypothesis). For an automorphic
representation of a unitary group such as G; whose base change to GL(n)
is cuspidal, the global multiplicity one Hypothesis 7.3.3 is a consequence
of [Mok15, KMSW14]. However, the version in Hypothesis 6.6.4 is restrictive,
as already noted in Section 6.6. Here we sketch an argument for removing this
hypothesis.

(1) The first and most difficult step is to find the appropriate notation for the
collection of 7’ such that A,» = A, — in other words, the global L-packet
containing 7. We let (r) denote the set of such 7’.

(2) Note in particular that () C S(K”, 7) (see (149) and the discussion above
Hypothesis 7.3.3). Thus, the isomorphisms in Lemma 6.6.10 need to be
modified. We have an isomorphism

jm s P rrenls = Pl — SUK E)18: C
i €(m)

i €(m)

and an isomorphism

P S(Kes R i= STKs: Ryx 0 ST (K5 E)a]
i €(r)

which is identified by j., with an R-lattice in P, ., yrl‘j’d ® nfss =l

(3) Lemma 6.6.12 needs to be modified analogously, but the definition given
there of Hjbord(K,, R)[7] defines a lattice in the sum of the nib,’SKS. This is
not adequate if we want to account for congruences between the different
local constituents of the m; at ramified places where the L-packets are
not singletons. On the other hand, if we only care about measuring the
congruences between 7 and the 7’ € S(K?, ) that define different global
Galois representations, then we can leave the definition of Hl(d,;ord(K,, R)[r]
as is, and modify the isomorphisms in Lemma 6.6.12 as in (2) above.
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(4) We also need to modify the statement of Lemma 6.6.5: the isomorphism in
(1) is replaced by

jo P s @nl = S(K..C)x)
7 €(mr)

and the isomorphism in (ii) is replaced analogously.
(5) The spaces I:, and I:,» would have to be replaced by direct sums over the ;.

(6) Finally, the identification in Lemma 9.1.2 only depends on Hypothesis 7.3.3
and not on the stronger Hypothesis 6.6.4.

Point (5) is the most objectionable, because it is not really compatible with
the Minimality Hypothesis 7.3.5. An alternative approach would be to choose
an idempotent e, s in the Hecke algebra of G relative to K that isolates the
representations i, at all inert v € S. Thus, for 7; € (w), m; # 7, ez s *xm; = 0.
If we then redefine S™(K,; E)[A.], H%"(K,, R)[7], and so forth, to be the
image of projection with respect to e, s, all of the main theorems remain true
without modification. Better still, we can choose e, s to be an idempotent modulo
p and lift it to an idempotent in characteristic 0, in order to avoid introducing
extraneous divisibilities by p in the final result and eliminating interesting
congruences between members of the L-packet.

REMARK 9.3.3 (The Minimality hypothesis). This is a consequence of one part
of the Gorenstein Hypothesis, and was included in order to work with a module
[fﬂ ® IA,,>] that is locally constant on the Hida family. One can easily eliminate
this hypothesis, but the statement is no longer so clean.

REMARK 9.3.4 (Unspecified local factors). The volume factor Ig is a
placekeeper. It might be more illuminating to replace /g by

. 1 !
IS=1_[Lv(m+§s Ty, Xu,v) IS

ves

and write the specialized value of the L-function

3 Lim+ 1,7, x.)
c() - 2:(¢. ¢") - Lo(x, k) IsL,(m, ord, , xu)+-
ba
Here L(s,m, x,) denotes the standard L-function without the archimedean
factors. Written this way, one sees that the inverted local Euler factors L, (m + 1,
Ty, Xu.) | can give rise to exceptional zeroes.
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Ideally one would like to choose an optimal vector in [IA,r ® I:-p] and to adapt
the local Eisenstein sections at primes in S to this choice. This would settle the
issues of minimality and local factors simultaneously. At present we do not see
how to carry this out.

REMARK 9.3.5 (The congruence factors). It is expected at least under the
Gorenstein hypothesis that a congruence factor ¢(r) can be chosen to be the
specialization at 7 of a canonical p-adic analytic function c that interpolates the
normalized and p-stabilized value at s = 1 of the adjoint L-function L(s, 7, Ad).
The factor c(;r) that appears in Main Theorem 9.2.2 depends on the choice of
period Q,, which in turn depends on the choice of f in Lemma 6.7.3. As
varies, the vector f can be chosen uniformly in the Hida family, but there is no
obvious preferred choice. For this reason, one can only define the hypothetical
analytic function ¢ up to a unit in the Hecke algebra. This is a persistent problem
in the theory, and it has been noted by Hida in [Hid96].

Acknowledgements

This project has been developing over many years and the authors have
benefited from the advice of numerous colleagues and from the hospitality of
the institutions—including UCLA, the Institute for Advanced Study, and Boston
University—that have provided the space to pursue our collaboration.

The authors wish to reiterate our thanks to Ching-Li Chai, Matthew Emerton,
and Eric Urban for their suggestions that have strongly influenced the present
paper, and to add our thanks to Barry Mazur for asking questions that have
motivated a number of our choices. We also thank Laurent Fargues, David
Hansen, Paul Garrett, Kai-Wen Lan, Zheng Liu, and Xin Wan for helpful
discussions. We are deeply grateful to Haruzo Hida for answering our questions
and for his consistent support.

Finally, we thank the four referees for their patient and careful reading of
the manuscript, which helped us enormously to improve the exposition and to
eliminate debris that remained from the many previous versions of the paper in
spite of our persistent efforts to remove it.

The authors are grateful for support from several funding sources. E.E.’s
research was partially supported by National Science Foundation Grants DMS-
1751281, DMS-1559609, and DMS-1249384. During an early part of the
project, her research was partially supported by an AMS-Simons Travel Grant.
M.H.s research received funding from the European Research Council under
the European Community’s Seventh Framework Programme (FP7/2007-2013) /
ERC Grant agreement no. 290766 (AAMOT). M.H. was partially supported by
NSF Grant DMS-1404769. J.L..’s research was partially supported by RGC-GRF

Downloaded from https://www.cambridge.org/core. IP address: 71.63.163.5, on 06 May 2020 at 09:22:42, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.4


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core

p-adic L-functions for unitary groups 157

grant 16303314 of HKSAR. C.S.’s research was partially supported by National
Science Foundation Grants DMS-0758379 and DMS-1301842.

Conflict of Interest: None.

References

[BHR94] D. Blasius, M. Harris and D. Ramakrishnan, ‘Coherent cohomology, limits of
discrete series, and Galois conjugation’, Duke Math. J. 73(3) (1994), 647-685.

[CEF*16] A. Caraiani, E. Eischen, J. Fintzen, E. Mantovan and I. Varma, ‘p-adic g-expansion
principles on unitary shimura varieties’, in Directions in Number Theory, Vol. 3
(Springer, Cham, 2016), 197-243.

[Cas95] W. Casselman, ‘Introduction to the theory of admissible representations of p-adic
reductive groups’, Unpublished manuscript, 1995, https://www.math.ubc.ca/~cass/
research/pdf/p-adic-book.pdf.

[CCO14] C.-L. Chai, B. Conrad and F. Oort, Complex Multiplication and Lifting Problems,
Mathematical Surveys and Monographs, 195 (American Mathematical Society,
Providence, RI, 2014).

[Che04] G. Chenevier, ‘Familles p-adiques de formes automorphes pour GL,’, J. Reine
Angew. Math. 570 (2004), 143-217.

[CHTO8] L. Clozel, M. Harris and R. Taylor, ‘Automorphy for some /-adic lifts of automorphic
mod [ Galois representations’, Publ. Math. Inst. Hautes Etudes Sci. 108 (2008),
1-181. With Appendix A, summarizing unpublished work of Russ Mann, and
Appendix B by Marie-France Vignéras.

[Coa89] . Coates, ‘On p-adic L-functions attached to motives over Q. I, Bol. Soc. Brasil.
Mat. (N.S.) 20(1) (1989), 101-112.

[CPR89] . Coates and B. Perrin-Riou, ‘On p-adic L-functions attached to motives over Q’, in
Algebraic Number Theory, Advanced Studies in Pure Mathematics, 17 (Academic
Press, Boston, MA, 1989), 23-54.

[Del79] P. Deligne, ‘Variétés de Shimura: interprétation modulaire, et techniques de
construction de modeles canoniques’, in Automorphic Forms, Representations
and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore.,
1977), Part 2, Proceedings of Symposia in Pure Mathematics, XXXIII (American
Mathematical Society, Providence, RI, 1979), 247-289.

[EFMV18] E. Eischen, J. Fintzen, E. Mantovan and I. Varma, ‘Differential operators and
families of automorphic forms on unitary groups of arbitrary signature’, Doc. Math.
23 (2018), 445-495.

[Eis12] E. E. Eischen, ‘p-adic differential operators on automorphic forms on unitary
groups’, Ann. Inst. Fourier (Grenoble) 62(1) (2012), 177-243.

[Eis14] E. Eischen, ‘A p-adic Eisenstein measure for vector-weight automorphic forms’,
Algebra Number Theory 8(10) (2014), 2433-2469.

[Eis15] E. E. Eischen, ‘A p-adic Eisenstein measure for unitary groups’, J. Reine Angew.
Math. 699 (2015), 111-142.

[Eis16] E. E. Eischen, ‘Differential operators, pullbacks, and families of automorphic forms
on unitary groups’, Ann. Math. Qué. 40(1) (2016), 55-82.

[EM19] E. Eischen and E. Mantovan, ‘p-adic families of automorphic forms in the pu-
ordinary setting’, Amer. J. Math. (2019), Accepted for publication.

Downloaded from https://www.cambridge.org/core. IP address: 71.63.163.5, on 06 May 2020 at 09:22:42, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.4


https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core

[Gar84]

[Gar08]

[GPSR87]
[GWO09]
[Har86]
[Har89]
[Har90]
[Har97]

[Har08]

[Har13a]
[Har13b]
[HKS96]

[HLSO05]

[HLS06]

[Hid88]

[Hid96]

[Hid98]

[Hid02]

[Hid04]

Downloaded from https://www.cambridge.org/core. IP address: 71.63.163.5, on 06 May 2020 at 09:22:42, subject to the Cambridge Core

E. Eischen, M. Harris, J. Li and C. Skinner 158

P. B. Garrett, ‘Pullbacks of Eisenstein series; applications’, in Automorphic Forms of
Several Variables (Katata, 1983), Progress in Mathematics, 46 (Birkhduser Boston,
Boston, MA, 1984), 114-137.

P. Garrett, ‘Values of Archimedean zeta integrals for unitary groups’, in Eisenstein
Series and Applications, Progress in Mathematics, 258 (Birkhéuser, Boston, Boston,
MA, 2008), 125-148.

S. Gelbart, 1. Piatetski-Shapiro and S. Rallis, Explicit Constructions of Automorphic
L-functions, Lecture Notes in Mathematics, 1254 (Springer, Berlin, 1987).

R. Goodman and N. R. Wallach, Symmetry, Representations, and Invariants,
Graduate Texts in Mathematics, 255 (Springer, Dordrecht, 2009).

M. Harris, ‘Arithmetic vector bundles and automorphic forms on Shimura varieties.
I, Compositio Math. 60(3) (1986), 323-378.

M. Harris, ‘Functorial properties of toroidal compactifications of locally symmetric
varieties’, Proc. Lond. Math. Soc. (3) 59(1) (1989), 1-22.

M. Harris, ‘Automorphic forms of 3-cohomology type as coherent cohomology
classes’, J. Differential Geom. 32(1) (1990), 1-63.

M. Harris, ‘L-functions and periods of polarized regular motives’, J. Reine Angew.
Math. 483 (1997), 75-161.

M. Harris, ‘A simple proof of rationality of Siegel-Weil Eisenstein series’, in
Eisenstein Series and Applications, Progress in Mathematics, 258 (Birkhéuser,
Boston, MA, 2008), 149-185.

M. Harris, ‘Beilinson—-Bernstein localization over Q and periods of automorphic
forms’, Int. Math. Res. Not. IMRN 9 (2013), 2000-2053.

M. Harris, ‘“The Taylor—Wiles method for coherent cohomology’, J. Reine Angew.
Math. 679 (2013), 125-153.

M. Harris, S. S. Kudla and W. J. Sweet, “Theta dichotomy for unitary groups’,
J. Amer. Math. Soc. 9(4) (1996), 941-1004.

M. Harris, J.-S. Li and C. M. Skinner, ‘The Rallis inner product formula and p-
adic L-functions’, in Automorphic Representations, L-functions and Applications:
Progress and Prospects, Ohio State Univ. Math. Res. Inst. Publ., 11 (de Gruyter,
Berlin, 2005), 225-255.

M. Harris, J.-S. Li and C. M. Skinner, ‘p-adic L-functions for unitary Shimura
varieties. I. Construction of the Eisenstein Measure’, Doc. Math. Extra Vol. (2006),
393-464 (electronic).

H. Hida, ‘A p-adic measure attached to the zeta functions associated with two elliptic
modular forms. II’, Ann. Inst. Fourier (Grenoble) 38(3) (1988), 1-83.

H. Hida, ‘On the search of genuine p-adic modular L-functions for GL(n)’, Mém.
Soc. Math. Fr. (N.S.) 67 (1996), vi+110, With a correction to: ‘On p-adic L-functions
of GL(2) x GL(2) over totally real fields’ Ann. Inst. Fourier (Grenoble) 41(2) (1991),
311-391.

H. Hida, ‘Automorphic induction and Leopoldt type conjectures for GL(n)’, Asian
J. Math. 2(4) (1998), 667-710. Mikio Sato: a great Japanese mathematician of the
twentieth century.

H. Hida, ‘Control theorems of coherent sheaves on Shimura varieties of PEL type’,
J. Inst. Math. Jussieu 1(1) (2002), 1-76.

H. Hida, p-adic Automorphic Forms on Shimura Varieties, Springer Monographs in
Mathematics (Springer, New York, 2004).

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.4


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core

[Jac79]

[KMSW14]

[Kat78]
[Kot92]

[Labl1]

[Lan12]

[Lan13]

[Lan16]

[Lan17]

[Lan18]

[LS13]
[Li92]
[Liu19a]
[Liul9b]
[MVW87]
[Mok15]
[Mo004]
[Pan94]
[Pill1]

[Shi97]

Downloaded from https://www.cambridge.org/core. IP address: 71.63.163.5, on 06 May 2020 at 09:22:42, subject to the Cambridge Core

p-adic L-functions for unitary groups 159

H. Jacquet, ‘Principal L-functions of the linear group’, in Automorphic Forms,
Representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ.,
Corvallis, Ore., 1977), Part 2, Proceedings of Symposia in Applied Mathematics,
XXXIII (American Mathematical Society, Providence, RI, 1979), 63-86.

T. Kaletha, A. Minguez, S. W. Shin and P.-J. White, ‘Endoscopic
classification of representations: Inner forms of unitary groups’, Preprint, 2014,
arXiv:1409.3731.pdf.

N. M. Katz, ‘p-adic L-functions for CM fields’, Invent. Math. 49(3) (1978),
199-297.

R. E. Kottwitz, ‘Points on some Shimura varieties over finite fields’, J. Amer. Math.
Soc. 5(2) (1992), 373-444.

J.-P. Labesse, ‘Changement de base CM et séries discretes’, in On the Stabilization
of the Trace Formula, Stab. Trace Formula Shimura Var. Arith. Appl., 1 (Int. Press,
Somerville, MA, 2011), 429-470.

K.-W. Lan, ‘Comparison between analytic and algebraic constructions of toroidal
compactifications of PEL-type Shimura varieties’, J. Reine Angew. Math. 664
(2012), 163-228.

K.-W. Lan, Arithmetic Compactifications of PEL-type Shimura Varieties, London
Mathematical Society Monographs, 36 (Princeton University Press, Princeton, NJ,
2013).

K.-W. Lan, ‘Higher Koecher’s principle’, Math. Res. Lett. 23(1) (2016), 163—-199.
K.-W. Lan, ‘Integral models of toroidal compactifications with projective cone
decompositions’, Int. Math. Res. Not. IMRN 11 (2017), 3237-3280.

K.-W. Lan, Compactifications of PEL-type Shimura Varieties and Kuga Families
with Ordinary Loci, (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,
2018).

K.-W. Lan and J. Suh, ‘Vanishing theorems for torsion automorphic sheaves on
general PEL-type Shimura varieties’, Adv. Math. 242 (2013), 228-286.

J.-S. Li, ‘Nonvanishing theorems for the cohomology of certain arithmetic
quotients’, J. Reine Angew. Math. 428 (1992), 177-217.

Z. Liu, ‘The doubling Archimedean zeta integrals for p-adic interpolation’, Math.
Res. Lett. (2019), Accepted for publication. Preprint available at arXiv:1904.07121.
Z. Liu, ‘p-adic L-functions for ordinary families on symplectic groups’, J. Inst.
Math. Jussieu (2019), 1-61.

C. Mceglin, M.-F. Vignéras and J.-L. Waldspurger, Correspondances de Howe sur
un corps p-adique, Lecture Notes in Mathematics, 1291 (Springer, Berlin, 1987).
C. P. Mok, ‘Endoscopic classification of representations of quasi-split unitary
groups’, Mem. Amer. Math. Soc. 235(1108) (2015), vi+248.

B. Moonen, ‘Serre-Tate theory for moduli spaces of PEL type’, Ann. Sci. Ec. Norm.
Supér. (4) 37(2) (2004), 223-269.

A. A. Panchishkin, ‘Motives over totally real fields and p-adic L-functions’, Ann.
Inst. Fourier (Grenoble) 44(4) (1994), 989-1023.

V. Pilloni, ‘Prolongement analytique sur les variétés de Siegel’, Duke Math. J. 157(1)
(2011), 167-222.

G. Shimura, Euler Products and Eisenstein Series, CBMS Regional Conference
Series in Mathematics, 93 (Published for the Conference Board of the Mathematical
Sciences, Washington, DC, 1997).

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.4


http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1409.3731.pdf
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
http://www.arxiv.org/abs/1904.07121
https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core

E. Eischen, M. Harris, J. Li and C. Skinner 160

[ShiO0] G. Shimura, Arithmeticity in the Theory of Automorphic Forms, Mathematical
Surveys and Monographs, 82 (American Mathematical Society, Providence, RI,
2000).
[SU02] C. Skinner and E. Urban, ‘Sur les déformations p-adiques des formes de Saito—
Kurokawa’, C. R. Math. Acad. Sci. Paris 335(7) (2002), 581-586.
[SU14] C. Skinner and E. Urban, ‘The Iwasawa main conjectures for GL,’, Invent. Math.
195(1) (2014), 1-2717.
[Wanl5] X. Wan, ‘Families of nearly ordinary Eisenstein series on unitary groups’, Algebra
Number Theory 9(9) (2015), 1955-2054. With an appendix by Kai-Wen Lan.
[Wed99] T. Wedhorn, ‘Ordinariness in good reductions of Shimura varieties of PEL-type’,
Ann. Sci. Ec. Norm. Supér. (4) 32(5) (1999), 575-618.

Downloaded from https://www.cambridge.org/core. IP address: 71.63.163.5, on 06 May 2020 at 09:22:42, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.4


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.4
https://www.cambridge.org/core

